电力系统保护与控制
電力繫統保護與控製
전력계통보호여공제
POWER SYSTM PROTECTION AND CONTROL
2015年
16期
1-7
,共7页
李啸骢%郑涛%梁志坚%徐俊华
李嘯驄%鄭濤%樑誌堅%徐俊華
리소총%정도%량지견%서준화
可控制动电阻%发电机励磁%微分代数模型%多指标非线性控制%暂态稳定
可控製動電阻%髮電機勵磁%微分代數模型%多指標非線性控製%暫態穩定
가공제동전조%발전궤려자%미분대수모형%다지표비선성공제%잠태은정
thyristor controlled braking resistor (TCBR)%generator excitation%differential algebraic models%multi-index nonlinear control%transient stability
针对微分代数模型的水轮发电机组可控制动电阻(Thyristor Controlled Braking Resistor,TCBR)与励磁系统进行多指标非线性扰动解耦控制律设计。微分代数模型多指标非线性设计方法(Differential Algebraic System Multi-Index Nonlinear Control,DASMINC)将输出函数选取为系统关键变量线性组合的形式,通过扰动解耦设计,借助哈特曼-格鲁勃曼(Hartman-Grobman)定理,适当选取输出函数参数矩阵配置微分代数模型闭环系统平衡点处特征根位置,使系统获得优良控制性能。仿真结果表明该方法控制的TCBR与发电机励磁系统能大幅提高水电站输电系统暂态稳定性,抗扰能力强,且能很好协调各状态量的动、静态性能。
針對微分代數模型的水輪髮電機組可控製動電阻(Thyristor Controlled Braking Resistor,TCBR)與勵磁繫統進行多指標非線性擾動解耦控製律設計。微分代數模型多指標非線性設計方法(Differential Algebraic System Multi-Index Nonlinear Control,DASMINC)將輸齣函數選取為繫統關鍵變量線性組閤的形式,通過擾動解耦設計,藉助哈特曼-格魯勃曼(Hartman-Grobman)定理,適噹選取輸齣函數參數矩陣配置微分代數模型閉環繫統平衡點處特徵根位置,使繫統穫得優良控製性能。倣真結果錶明該方法控製的TCBR與髮電機勵磁繫統能大幅提高水電站輸電繫統暫態穩定性,抗擾能力彊,且能很好協調各狀態量的動、靜態性能。
침대미분대수모형적수륜발전궤조가공제동전조(Thyristor Controlled Braking Resistor,TCBR)여려자계통진행다지표비선성우동해우공제률설계。미분대수모형다지표비선성설계방법(Differential Algebraic System Multi-Index Nonlinear Control,DASMINC)장수출함수선취위계통관건변량선성조합적형식,통과우동해우설계,차조합특만-격로발만(Hartman-Grobman)정리,괄당선취수출함수삼수구진배치미분대수모형폐배계통평형점처특정근위치,사계통획득우량공제성능。방진결과표명해방법공제적TCBR여발전궤려자계통능대폭제고수전참수전계통잠태은정성,항우능력강,차능흔호협조각상태량적동、정태성능。
A multi-index coordinated control method based nonlinear differential algebraic model for single machine infinite bus power system with thyristor controlled braking resistor (TCBR) is proposed. By means of Hartman-Grobman theorem, differential algebraic system multi-index nonlinear control (DASMINC) design method can reassign the closed-loop system eigenvalues of linear approximate system to the nonlinear differential algebraic system via appropriately selecting output function parameter matrix. Therefore, the system can access to good control performance and strong anti-interference ability. Simulation results show that TCBR and generator excitation system controlled by this proposed method can significantly improve power system transient stability limitation and effectively coordinate the dynamic and the steady-state performances of the system.