科学技术与工程
科學技術與工程
과학기술여공정
SCIENCE TECHNOLOGY AND ENGINEERING
2015年
22期
74-78
,共5页
早龄期补偿收缩钢纤维混凝土%冲击荷载%应力-应变曲线%被动围压%压剪破坏
早齡期補償收縮鋼纖維混凝土%遲擊荷載%應力-應變麯線%被動圍壓%壓剪破壞
조령기보상수축강섬유혼응토%충격하재%응력-응변곡선%피동위압%압전파배
early age of SCSFRC%impact loading%passive confining pressure%stress-strain curve%compression-shear damage
为了研究被动围压约束条件下早龄期混凝土动态力学性能,利用直径74 mm分离式霍普金森压杆进行试验。在不同加载气压钢质套筒被动约束条件下,测试7d龄期补偿收缩钢纤维混凝土试件轴向或径向的应力和应变变化趋势。结果表明:补偿收缩钢纤维混凝土材料在被动围压下,延性和抵抗破坏能力显著加强,试件轴向应力-时间历程曲线和轴向应力-应变曲线可知,整个加载过程分为三个阶段。第一阶段为弹性阶段,由于试件刚性所致,应力增幅快;第二阶段为弹塑性阶段,试件逐步压缩变形,应力增长缓慢,应变增幅大;第三阶段为试件塑性破坏阶段,应力直线下降;在0.6 MPa、0.7 MPa和0.8 MPa气压作用下,试样典型轴向应力峰值为无围压条件单轴压缩SHPB实验时的1.5 ̄1.8倍;试件破坏应变高达(23 ̄27)×10-3,是无围压SHPB试验试件破坏应变的4 ̄6倍;从试件破坏形态看,由于钢纤维掺入,试件仍保持较好的整体性,裂缝分布表征试件为压剪破坏。
為瞭研究被動圍壓約束條件下早齡期混凝土動態力學性能,利用直徑74 mm分離式霍普金森壓桿進行試驗。在不同加載氣壓鋼質套筒被動約束條件下,測試7d齡期補償收縮鋼纖維混凝土試件軸嚮或徑嚮的應力和應變變化趨勢。結果錶明:補償收縮鋼纖維混凝土材料在被動圍壓下,延性和牴抗破壞能力顯著加彊,試件軸嚮應力-時間歷程麯線和軸嚮應力-應變麯線可知,整箇加載過程分為三箇階段。第一階段為彈性階段,由于試件剛性所緻,應力增幅快;第二階段為彈塑性階段,試件逐步壓縮變形,應力增長緩慢,應變增幅大;第三階段為試件塑性破壞階段,應力直線下降;在0.6 MPa、0.7 MPa和0.8 MPa氣壓作用下,試樣典型軸嚮應力峰值為無圍壓條件單軸壓縮SHPB實驗時的1.5 ̄1.8倍;試件破壞應變高達(23 ̄27)×10-3,是無圍壓SHPB試驗試件破壞應變的4 ̄6倍;從試件破壞形態看,由于鋼纖維摻入,試件仍保持較好的整體性,裂縫分佈錶徵試件為壓剪破壞。
위료연구피동위압약속조건하조령기혼응토동태역학성능,이용직경74 mm분리식곽보금삼압간진행시험。재불동가재기압강질투통피동약속조건하,측시7d령기보상수축강섬유혼응토시건축향혹경향적응력화응변변화추세。결과표명:보상수축강섬유혼응토재료재피동위압하,연성화저항파배능력현저가강,시건축향응력-시간역정곡선화축향응력-응변곡선가지,정개가재과정분위삼개계단。제일계단위탄성계단,유우시건강성소치,응력증폭쾌;제이계단위탄소성계단,시건축보압축변형,응력증장완만,응변증폭대;제삼계단위시건소성파배계단,응력직선하강;재0.6 MPa、0.7 MPa화0.8 MPa기압작용하,시양전형축향응력봉치위무위압조건단축압축SHPB실험시적1.5 ̄1.8배;시건파배응변고체(23 ̄27)×10-3,시무위압SHPB시험시건파배응변적4 ̄6배;종시건파배형태간,유우강섬유참입,시건잉보지교호적정체성,렬봉분포표정시건위압전파배。
In order to research the dynamic mechanical properties of early age concrete under the passive confi-ning constraint conditions, experiments by using 74 mm diameter SHPB were maken which aim at testing the axial or radial stress and strain variation trend of 7 d age shrinkage compensation of steel fiber reinforced concrete ( SCS-FRC) under different load pressure steel sleeve passive constraints. Results show that under the passive confining pressure, compensating shrinkage steel fiber concrete material′s ductility and the ability of resisting destruction strengthen dramatically. The axials stress-time history curve of the specimen and the axial stress-strain curve reveal that the whole loading processes can be divided into three stages. Namely, the first stage is the elastic stage, stress increase fast due to rigidity of specimen. The second stage is the elastic-plastic stage in which specimens com-pressed into deformation gradually, the stress increase slowly, but the amplification of strain increase dramatically. The third stage is the plastic failure stage that the stress declines linearly. Under the pressure of 0. 6 MPa, 0. 7 MPa and 0. 8 MPa, the typical axial stress peak value of specimens is 1. 5 to 1. 8 times of single axial compression SHPB experiment without confining pressure condition. Specimen failure strain up to (23 ̄27) × 10 -3, is no confining pressure SHPB test specimen failure strain of 4  ̄ 6 times. Besides, in terms of the specimen failure pattern, it can see that when adding steel fiber, specimen still keep good integrity and the crack distribution characterization of specimens is compressive shear failure.