有色金属科学与工程
有色金屬科學與工程
유색금속과학여공정
JIANGXI NONFERROUS METALS
2015年
4期
104-110
,共7页
金解放%邱灿%陶伟%郭钟群
金解放%邱燦%陶偉%郭鐘群
금해방%구찬%도위%곽종군
离子型稀土%太沙基模型%毛细上升%模型修正%渗透系数
離子型稀土%太沙基模型%毛細上升%模型脩正%滲透繫數
리자형희토%태사기모형%모세상승%모형수정%삼투계수
ionic rare earth%Terzaghi model%capillary rise%model updating%coefficient of permeability
针对太沙基模型将毛细上升全过程假定为饱和渗透的缺陷,以离子型稀土原地浸矿开采为工程背景,对该模型中关键参数进行重新定义,用修正后的模型确定参数并拟合分析离子型稀土毛细上升试验结果.用毛细渗透系数代替太沙基模型中饱和渗透系数,前者与后者有不同的意义和大小.用土样最大粒径分别为0.3 mm、0.6 mm、1.18 mm和4.75 mm的离子型稀土进行毛细上升试验,用实测相应粒径稀土饱和渗透系数代入太沙基模型,同修正前后模型预测的数据与试验数据比较.结果表明,修正参数后的太沙基模型拟合数据与实际实测试验结果更吻合,其毛细渗透系数与实际一致.利用修正后模型拟合分析离子型稀土毛细上升试验结果.清水在离子型稀土中发生毛细上升时,随土体大颗粒晶体的增加,毛细渗透系数逐渐减小,最大毛细上升高度逐渐增加.对粒径级配相同的稀土土样,毛细渗透系数小于饱和渗透系数.毛细上升速率随时间呈现先快速下降、后缓慢减小的趋势.
針對太沙基模型將毛細上升全過程假定為飽和滲透的缺陷,以離子型稀土原地浸礦開採為工程揹景,對該模型中關鍵參數進行重新定義,用脩正後的模型確定參數併擬閤分析離子型稀土毛細上升試驗結果.用毛細滲透繫數代替太沙基模型中飽和滲透繫數,前者與後者有不同的意義和大小.用土樣最大粒徑分彆為0.3 mm、0.6 mm、1.18 mm和4.75 mm的離子型稀土進行毛細上升試驗,用實測相應粒徑稀土飽和滲透繫數代入太沙基模型,同脩正前後模型預測的數據與試驗數據比較.結果錶明,脩正參數後的太沙基模型擬閤數據與實際實測試驗結果更吻閤,其毛細滲透繫數與實際一緻.利用脩正後模型擬閤分析離子型稀土毛細上升試驗結果.清水在離子型稀土中髮生毛細上升時,隨土體大顆粒晶體的增加,毛細滲透繫數逐漸減小,最大毛細上升高度逐漸增加.對粒徑級配相同的稀土土樣,毛細滲透繫數小于飽和滲透繫數.毛細上升速率隨時間呈現先快速下降、後緩慢減小的趨勢.
침대태사기모형장모세상승전과정가정위포화삼투적결함,이리자형희토원지침광개채위공정배경,대해모형중관건삼수진행중신정의,용수정후적모형학정삼수병의합분석리자형희토모세상승시험결과.용모세삼투계수대체태사기모형중포화삼투계수,전자여후자유불동적의의화대소.용토양최대립경분별위0.3 mm、0.6 mm、1.18 mm화4.75 mm적리자형희토진행모세상승시험,용실측상응립경희토포화삼투계수대입태사기모형,동수정전후모형예측적수거여시험수거비교.결과표명,수정삼수후적태사기모형의합수거여실제실측시험결과경문합,기모세삼투계수여실제일치.이용수정후모형의합분석리자형희토모세상승시험결과.청수재리자형희토중발생모세상승시,수토체대과립정체적증가,모세삼투계수축점감소,최대모세상승고도축점증가.대립경급배상동적희토토양,모세삼투계수소우포화삼투계수.모세상승속솔수시간정현선쾌속하강、후완만감소적추세.
The Terzaghi model assumes that capillary rise permeability coefficient of soil is always saturated permeability coefficient, which brings about a great differences between the model results and actual measurements. In order to overcome the shortcomings, the key parameter of Terzaghi model was redefined with in-situ leaching of ionic rare earth mining as the engineering background, and the modified parameter was used to analyze the test results of capillary rise of ionic rare earth. The saturated permeability coefficient of Terzaghi model was replaced with the capillary permeability coefficient, and the latter had different values and meanings with the former. Four groups of capillary rise tests on ionic rare earth were carried out, their maximum grain sizes were 0.3mm, 0.6mm, 1.18mm and 4.75mm respectively, the feasibility of modified model was proved with fitting results of the experimental data. Putting measured saturated permeability coefficients of corresponding rare earth into Terzaghi model, the advancement of modified model was testified by comparing the estimated data of Terzaghi model and modified model with test data. The modified model was used to fit and analyze the test results of capillary rise experiment on ionic rare earth. Results show that the modified model is more consistent with reality than the original model, and the value of capillary permeability coefficient is closer to the actual value. Under water capillary rise in ionic rare earth, the values of capillary permeability coefficient decrease and the maximum height of capillary rise increase gradually with increasing the maximum particle size of soils. For the ionic rare earth of the same particle size, the value of capillary permeability coefficient is less than saturated permeability coefficient. Capillary rise velocity takes on a rapid decline at first, and then slowly decreasing trend over time.