计算机与数字工程
計算機與數字工程
계산궤여수자공정
COMPUTER & DIGITAL ENGINEERING
2015年
8期
1403-1408
,共6页
合成孔径雷达%压缩感知%多观测向量%贝叶斯压缩感知
閤成孔徑雷達%壓縮感知%多觀測嚮量%貝葉斯壓縮感知
합성공경뢰체%압축감지%다관측향량%패협사압축감지
synthetic aperture radar%compressed sensing%multiple measurements vectors%Bayesian compressed sensing
基于压缩感知(CS)的合成孔径雷达(SAR)成像可以有效降低数据量、提高分辨率和减少信号带宽,但由于SAR 成像过程中受到强噪声和杂波干扰,在信号杂波噪声比较低的情况下,成像结果不高。在 CS 理论的基础上提出了基于多观测向量贝叶斯(MMV-BCS)方法的 SAR 成像,在距离向运用 CS 技术降低采样率,在方位向采样随机抽取孔径位置发射和接受信号,用尽量少的测量孔径和采样数据获得重构目标散射系数。通过仿真简单点目标成像和复杂二维成像验证了,在低信号杂波噪声比条件下基于 MMV-BCS 算法得到的图像比传统 CS 方法得到的图像更加尖锐,比单观测向量(SMV-BCS)方法得到的图像更加稀疏,具有更高的分辨率。
基于壓縮感知(CS)的閤成孔徑雷達(SAR)成像可以有效降低數據量、提高分辨率和減少信號帶寬,但由于SAR 成像過程中受到彊譟聲和雜波榦擾,在信號雜波譟聲比較低的情況下,成像結果不高。在 CS 理論的基礎上提齣瞭基于多觀測嚮量貝葉斯(MMV-BCS)方法的 SAR 成像,在距離嚮運用 CS 技術降低採樣率,在方位嚮採樣隨機抽取孔徑位置髮射和接受信號,用儘量少的測量孔徑和採樣數據穫得重構目標散射繫數。通過倣真簡單點目標成像和複雜二維成像驗證瞭,在低信號雜波譟聲比條件下基于 MMV-BCS 算法得到的圖像比傳統 CS 方法得到的圖像更加尖銳,比單觀測嚮量(SMV-BCS)方法得到的圖像更加稀疏,具有更高的分辨率。
기우압축감지(CS)적합성공경뢰체(SAR)성상가이유효강저수거량、제고분변솔화감소신호대관,단유우SAR 성상과정중수도강조성화잡파간우,재신호잡파조성비교저적정황하,성상결과불고。재 CS 이론적기출상제출료기우다관측향량패협사(MMV-BCS)방법적 SAR 성상,재거리향운용 CS 기술강저채양솔,재방위향채양수궤추취공경위치발사화접수신호,용진량소적측량공경화채양수거획득중구목표산사계수。통과방진간단점목표성상화복잡이유성상험증료,재저신호잡파조성비조건하기우 MMV-BCS 산법득도적도상비전통 CS 방법득도적도상경가첨예,비단관측향량(SMV-BCS)방법득도적도상경가희소,구유경고적분변솔。
Synthetic aperture radar imaging based on compressed sensing could reduce the number of data ,enhance res-olution ratios and cut down the bandwidth of signals .As the procedures of imaging are disturbed by noises and clutters ,the results of SAR imaging is not very well in low SCNR .Multiple measurements vectors Bayesian algorithm ,a new strategy a-bout SAR imaging on the base of CS theory was proposed in this paper ,which can reduce the sampling frequency by CS theo-ry in rang direction and extract randomly aperture positions to send and receive signals in azimuth direction .Using the least apertures and sampling data to reconstruct the targets scattering coefficients as it possible .The paper validates that the re-sults of SAR imaging on the base of multiple measurements vectors Bayesian algorithm are more sharp-pointed than tradition-al CS algorithms ,sparser and higher resolutions than single measurements vectors Bayesian algorithm by simulating experi-ments on simple targets and complicated 2D imaging .