新型工业化
新型工業化
신형공업화
New Industrialization Straregy
2015年
5期
9-14
,共6页
孔玲爽%潘晓楠%肖伸平%凌云
孔玲爽%潘曉楠%肖伸平%凌雲
공령상%반효남%초신평%릉운
配电网%故障定位%拟态物理学算法
配電網%故障定位%擬態物理學算法
배전망%고장정위%의태물이학산법
distribution network%fault location%APO
配电网故障定位的本质是一个离散域二进制寻优问题,因此找到一种全局寻优能力强的二进制算法来解决配电网故障定位是十分困难的。本文针对拟态物理学算法(APO, Artificial Physics Optimization)陷入局部最优的缺点,通过引入反向学习原理改进算法初始解生成过程,并在局部最优时利用混沌无序的特点保持算法的多样性,最后构建了配电网故障定位的数学模型,利用改进后的APO算法对配电网故障进行定位处理。仿真结果表明,采用改进类APO算法进行配电网故障区段定位具有较高容错性,能够实现单点和多点故障的准确定位,通过与遗传算法、蚁群算法比较,本文算法在定位准确和容错性方面有较大优势。
配電網故障定位的本質是一箇離散域二進製尋優問題,因此找到一種全跼尋優能力彊的二進製算法來解決配電網故障定位是十分睏難的。本文針對擬態物理學算法(APO, Artificial Physics Optimization)陷入跼部最優的缺點,通過引入反嚮學習原理改進算法初始解生成過程,併在跼部最優時利用混沌無序的特點保持算法的多樣性,最後構建瞭配電網故障定位的數學模型,利用改進後的APO算法對配電網故障進行定位處理。倣真結果錶明,採用改進類APO算法進行配電網故障區段定位具有較高容錯性,能夠實現單點和多點故障的準確定位,通過與遺傳算法、蟻群算法比較,本文算法在定位準確和容錯性方麵有較大優勢。
배전망고장정위적본질시일개리산역이진제심우문제,인차조도일충전국심우능력강적이진제산법래해결배전망고장정위시십분곤난적。본문침대의태물이학산법(APO, Artificial Physics Optimization)함입국부최우적결점,통과인입반향학습원리개진산법초시해생성과정,병재국부최우시이용혼돈무서적특점보지산법적다양성,최후구건료배전망고장정위적수학모형,이용개진후적APO산법대배전망고장진행정위처리。방진결과표명,채용개진류APO산법진행배전망고장구단정위구유교고용착성,능구실현단점화다점고장적준학정위,통과여유전산법、의군산법비교,본문산법재정위준학화용착성방면유교대우세。
The essence of fault location in distribution network is a binary optimization problem in discrete domain, so it is very difficult to 昀nd a binary algorithm for global optimization to solve the fault location in distribution network. Considering the defects that it can be easy for APO to trap into local optimization, the principle of reverse learning is introduced to improve the initial solution of the algorithm and the characteristics of chaos and disorder is used to keep the diversity of the algorithm in this paper. Finally, the mathematical model of fault location in distribution network is established, and we use the improved APO to locate the fault in distribution network. The simulation results show that the improved APO can be used to locate the fault of the distribution network with a high fault tolerance, especially the accurate location of single point and multi point fault.. The comparison between genetic algorithm(GA)、ACO(ant colony optimization) and improved APO in location shows that the proposed method has advantages in accuracy, stability and high fault tolerance.