太原理工大学学报
太原理工大學學報
태원리공대학학보
JOURNAL OF TAIYUAN UNIVERSITY OF TECHNOLOGY
2015年
5期
483-488
,共6页
冉娜妮%郭艳玲%高峰%何宏伟
冉娜妮%郭豔玲%高峰%何宏偉
염나니%곽염령%고봉%하굉위
共液化残渣%沥青质%热缩聚%中间相沥青
共液化殘渣%瀝青質%熱縮聚%中間相瀝青
공액화잔사%력청질%열축취%중간상력청
coliquefaction residue%asphaltene%pyrocondensation polymerization%mesophase pitch
以两种煤油共液化残渣CLR1、CLR2中萃取出的沥青质A1、A2为原料,在不同热聚合温度、不同时间下制备中间相沥青;采用偏光显微镜(POM )、傅里叶变换红外光谱(FT‐IR)和扫描电子显微镜(SEM )对中间相沥青的形成过程及形态性能进行了考察。结果表明,A1和 A2在380℃下保温10 h均可生成中间相微球,A1在440℃下保温6 h生成各向异性流线型中间相,A2在440℃下保温12 h生成各向异性体中间相;中间相沥青中的甲苯不溶物(TI)和喹啉不溶物(QI)含量随着反应温度的升高、反应时间的延长而增加,而产率减少。研究表明,煤油共液化残渣中的沥青质可制备中间相微球和针状焦。
以兩種煤油共液化殘渣CLR1、CLR2中萃取齣的瀝青質A1、A2為原料,在不同熱聚閤溫度、不同時間下製備中間相瀝青;採用偏光顯微鏡(POM )、傅裏葉變換紅外光譜(FT‐IR)和掃描電子顯微鏡(SEM )對中間相瀝青的形成過程及形態性能進行瞭攷察。結果錶明,A1和 A2在380℃下保溫10 h均可生成中間相微毬,A1在440℃下保溫6 h生成各嚮異性流線型中間相,A2在440℃下保溫12 h生成各嚮異性體中間相;中間相瀝青中的甲苯不溶物(TI)和喹啉不溶物(QI)含量隨著反應溫度的升高、反應時間的延長而增加,而產率減少。研究錶明,煤油共液化殘渣中的瀝青質可製備中間相微毬和針狀焦。
이량충매유공액화잔사CLR1、CLR2중췌취출적력청질A1、A2위원료,재불동열취합온도、불동시간하제비중간상력청;채용편광현미경(POM )、부리협변환홍외광보(FT‐IR)화소묘전자현미경(SEM )대중간상력청적형성과정급형태성능진행료고찰。결과표명,A1화 A2재380℃하보온10 h균가생성중간상미구,A1재440℃하보온6 h생성각향이성류선형중간상,A2재440℃하보온12 h생성각향이성체중간상;중간상력청중적갑분불용물(TI)화규람불용물(QI)함량수착반응온도적승고、반응시간적연장이증가,이산솔감소。연구표명,매유공액화잔사중적력청질가제비중간상미구화침상초。
In this study ,mesophase pitch was synthesized from two kinds of refined asphalt‐ene (A1 ,A2) extracted from Yanzhou coal and fluidized catalytic cracking slurry (FCCS) coliq‐uefaction residue (CLR1 ,CLR2) by pyrocondensation method at atmospheric pressure .Me‐sophase pitch was characterized by polarized optical microscopy (MOP) ,Fourier transform infra‐red spectrometry (FT‐IR) and scanning electron microscopy (SEM ) .The results show that A1 and A2 generated mesophase microspheres w hen hold at 380 ℃ for 10 h ,A1 sample formed ani‐sotropy flow domain when hold at 440 ℃ for 6 h ,while A2 sample formed bulk anisotropy me‐sophase when hold at 440 ℃ for 12 h .In addition ,the content of TI and QI of the mesophase pitch samples increased with the increase of temperature and holding time ,but the yield decreased contrarily .Research suggests that mesophase microbeads and needle coke could be produced from asphaltene of coliquefaction residue .