微处理机
微處理機
미처리궤
MICROPROCESSORS
2015年
4期
42-44,48
,共4页
Kinect 感应器%k -means 算法%深度图像%空洞修复%聚类%引导图像%联合双边滤波
Kinect 感應器%k -means 算法%深度圖像%空洞脩複%聚類%引導圖像%聯閤雙邊濾波
Kinect 감응기%k -means 산법%심도도상%공동수복%취류%인도도상%연합쌍변려파
Kinect sensor%K -means algorithm%Depth image%Hole repair%The clustering%Guiding image%Joint bilateral filter
为解决Kinect感应器所采集的深度图像中存在大面积空洞的问题,提出了一种深度图像空洞修复方法。该算法首先输入同步获取的彩色图像和深度图像;接着利用 k -means 算法对灰度化后的彩色图像进行聚类,聚类结果作为引导图像;然后对每个深度图像中的空洞点,搜索引导图像中与之相匹配的非空洞像素点,将该点的深度值作为空洞点的深度值。实验结果表明,该算法利用聚类思想,将彩色图像应用到对深度图像的空洞修复,有效完成了对深度图像的空洞填充,修复后深度图像的平滑度优于联合双边滤波方法,较好地提高了深度图像的质量。
為解決Kinect感應器所採集的深度圖像中存在大麵積空洞的問題,提齣瞭一種深度圖像空洞脩複方法。該算法首先輸入同步穫取的綵色圖像和深度圖像;接著利用 k -means 算法對灰度化後的綵色圖像進行聚類,聚類結果作為引導圖像;然後對每箇深度圖像中的空洞點,搜索引導圖像中與之相匹配的非空洞像素點,將該點的深度值作為空洞點的深度值。實驗結果錶明,該算法利用聚類思想,將綵色圖像應用到對深度圖像的空洞脩複,有效完成瞭對深度圖像的空洞填充,脩複後深度圖像的平滑度優于聯閤雙邊濾波方法,較好地提高瞭深度圖像的質量。
위해결Kinect감응기소채집적심도도상중존재대면적공동적문제,제출료일충심도도상공동수복방법。해산법수선수입동보획취적채색도상화심도도상;접착이용 k -means 산법대회도화후적채색도상진행취류,취류결과작위인도도상;연후대매개심도도상중적공동점,수색인도도상중여지상필배적비공동상소점,장해점적심도치작위공동점적심도치。실험결과표명,해산법이용취류사상,장채색도상응용도대심도도상적공동수복,유효완성료대심도도상적공동전충,수복후심도도상적평활도우우연합쌍변려파방법,교호지제고료심도도상적질량。
In order to solve large dark holes in Kinect depth image,this paper proposes a depth hole -filling method.It firstly inputs synchronous color image and depth image,and uses k -means algorithm to cluster image pixels in gray image.The result is used as a guiding image.Then,for each hole of the depth image,it finds a non -hole pixel matched in the guiding image and uses its depth value to fill the corresponding hole.The experimental results show that the proposed algorithm,using clustering concept,applies the color image to the hole repairing of depth image and effectively fills dark holes in the depth image,and as the smoothness of repaired depth image is better than that of joint bilateral filtering method,the quality of depth image improves a lot.