浙江大学学报(农业与生命科学版)
浙江大學學報(農業與生命科學版)
절강대학학보(농업여생명과학판)
JOURNAL OF ZHEJIANG UNIVERSITY(AGRICULTURE & LIFE SCIENCES)
2015年
4期
421-427
,共7页
刘小慧%邹满钰%印丽萍%郭水良
劉小慧%鄒滿鈺%印麗萍%郭水良
류소혜%추만옥%인려평%곽수량
假高粱%紫外光谱%单因素方差分析%排序%聚类分析
假高粱%紫外光譜%單因素方差分析%排序%聚類分析
가고량%자외광보%단인소방차분석%배서%취류분석
Sorghum halepense ( L .) Per%ultraviolet spectrum%one-way analysis of variance%ordination%cluster analysis
为便于出入境检验检疫部门正确、快速地鉴别出假高粱[ Sorghum halepense ( L .) Pers]及其近缘种,以石油醚作为溶剂,获取了假高粱、高粱[ Sorghum bicolor ( L .) Moench]、黑高粱( Sorghum almum Parodi)和苏丹草[ Sorghum sudanense ( Piper) Stapf]种子12份样品的浸提液,应用Unicam UV540型紫外分光光度计,将狭缝设置成1 nm ,扫描速率0.5 s ,获得了200~400 nm波长范围内每种植物种子在200个紫外波段上的吸光度.借助于SPSS 16.0软件,应用单因素方差分析,过滤掉差异性小的波段,明确了假高粱与近缘植物种子间存在显著和极显著差异的63个波段.对这63个波段上的吸光度数据应用主成分分析进一步筛选出了信息负荷量大的18个波段.以这18个波段上的吸光度数据为指标,以12个样品为对象,做出了它们的紫外光谱图、聚类图和二维排序图.上述方法能较好地将假高粱与其他3种近缘杂草种子鉴别开.为比较通过单因素方差分析和主成分分析后筛选的光谱数据对鉴别假高粱与其他3种近缘植物种子的效果,直接基于200个波长上的吸光度数据,应用相同的软件和参数,也做出了假高粱、高粱、黑高粱和苏丹草12个样品的紫外光谱图、聚类图和二维排序图,说明筛选出的这些敏感波段能够更简便、有效地识别假高粱和其近缘植物种子,为今后应用紫外光谱法鉴别假高粱与同属近缘的其他3种植物种子提供了技术参数.
為便于齣入境檢驗檢疫部門正確、快速地鑒彆齣假高粱[ Sorghum halepense ( L .) Pers]及其近緣種,以石油醚作為溶劑,穫取瞭假高粱、高粱[ Sorghum bicolor ( L .) Moench]、黑高粱( Sorghum almum Parodi)和囌丹草[ Sorghum sudanense ( Piper) Stapf]種子12份樣品的浸提液,應用Unicam UV540型紫外分光光度計,將狹縫設置成1 nm ,掃描速率0.5 s ,穫得瞭200~400 nm波長範圍內每種植物種子在200箇紫外波段上的吸光度.藉助于SPSS 16.0軟件,應用單因素方差分析,過濾掉差異性小的波段,明確瞭假高粱與近緣植物種子間存在顯著和極顯著差異的63箇波段.對這63箇波段上的吸光度數據應用主成分分析進一步篩選齣瞭信息負荷量大的18箇波段.以這18箇波段上的吸光度數據為指標,以12箇樣品為對象,做齣瞭它們的紫外光譜圖、聚類圖和二維排序圖.上述方法能較好地將假高粱與其他3種近緣雜草種子鑒彆開.為比較通過單因素方差分析和主成分分析後篩選的光譜數據對鑒彆假高粱與其他3種近緣植物種子的效果,直接基于200箇波長上的吸光度數據,應用相同的軟件和參數,也做齣瞭假高粱、高粱、黑高粱和囌丹草12箇樣品的紫外光譜圖、聚類圖和二維排序圖,說明篩選齣的這些敏感波段能夠更簡便、有效地識彆假高粱和其近緣植物種子,為今後應用紫外光譜法鑒彆假高粱與同屬近緣的其他3種植物種子提供瞭技術參數.
위편우출입경검험검역부문정학、쾌속지감별출가고량[ Sorghum halepense ( L .) Pers]급기근연충,이석유미작위용제,획취료가고량、고량[ Sorghum bicolor ( L .) Moench]、흑고량( Sorghum almum Parodi)화소단초[ Sorghum sudanense ( Piper) Stapf]충자12빈양품적침제액,응용Unicam UV540형자외분광광도계,장협봉설치성1 nm ,소묘속솔0.5 s ,획득료200~400 nm파장범위내매충식물충자재200개자외파단상적흡광도.차조우SPSS 16.0연건,응용단인소방차분석,과려도차이성소적파단,명학료가고량여근연식물충자간존재현저화겁현저차이적63개파단.대저63개파단상적흡광도수거응용주성분분석진일보사선출료신식부하량대적18개파단.이저18개파단상적흡광도수거위지표,이12개양품위대상,주출료타문적자외광보도、취류도화이유배서도.상술방법능교호지장가고량여기타3충근연잡초충자감별개.위비교통과단인소방차분석화주성분분석후사선적광보수거대감별가고량여기타3충근연식물충자적효과,직접기우200개파장상적흡광도수거,응용상동적연건화삼수,야주출료가고량、고량、흑고량화소단초12개양품적자외광보도、취류도화이유배서도,설명사선출적저사민감파단능구경간편、유효지식별가고량화기근연식물충자,위금후응용자외광보법감별가고량여동속근연적기타3충식물충자제공료기술삼수.
Summary Sorghum halepense ( L .) Pers is an important quarantine weed , which is native to the Mediterranean region , and now is considered as one of the ten worst weeds in the world . The species is mainly dispersed by seeds . Sorghum almum Parodi is also an important weed , and Sorghum bicolor ( L .) Moench and Sorghum sudanense ( Piper) Stapf are two cultivated plants . Due to their morphological similarity , it is difficult for entry‐exit inspection and quarantine departments to properly and quickly identify the seeds of S . halepense from those of its closed species . Therefore , how to identify the seeds of S . halepense from those of its congeneric species is urgently needed .
<br> In this paper , seeds from the above four species were extracted with petroleum ether to get their extractions , which were analysed by ultraviolet ( UV) spectrophotometer ( Unicam UV540) to get 200 UV absorbance data within 200 400 nm with 1 nm slit and at a scan rate of 0 .5 s . From these 200 absorbance data , the sensitive wavelengths whose absorbance data could be separated each other were firstly identified by SPSS 16 .0 using one‐way analysis of variance ( ANOVA ) . From these preliminarily‐selected sensitive wavelengths , more sensitive wavelengths with high information load were further identified by principal component analysis ( PCA) . With the absorbance data of these informative wavelength spectra in relation to four species , both cluster analysis and PCA were applied to produce a dendrogram and a two‐dimensional scatter plot , respectively . In order to verify the effect of the informative wavelengths which were selected by one‐way ANOVA and PCA , a spectrum chart , a dendrogram , a two‐dimensional scatter plot from PCA were directly produced on the basis of the absorbance data corresponding to the 200 wavelengths .
<br> According to the above procedures , sixty‐three wavelengths were preliminarily selected by using ANOVA . From these wavelengths , eighteen informative wavelengths from 283 to 300 nm with a step of 1 nm were identified by PCA . On the dendrogram , the scatter plot and the spectrum chart produced based on these eighteen informative wavelengths , the seed samples of S . halepense and its three congeneric species were well separated each other . All these three schemes were better than those on the basis of the absorbance data corresponding to the 200 wavelengths in the seed identification of these four Sorghum species .
<br> The above results indicate that the extraction scheme with petroleum ether , and the selected eighteen informative wavelengths by ANOVA and PCA , as well as the charts by cluster analysis , PCA , or directly based on absorbance data are effective to identify the seeds of S . halepense from those of S . bicolor ,S . almum and S . sudanense .