长春理工大学学报(自然科学版)
長春理工大學學報(自然科學版)
장춘리공대학학보(자연과학판)
JOURNAL OF CHANGCHUN UNIVERSITY OF SCIENCE AND TECHNOLOGY(NATURAL SCIENCE EDITION)
2015年
4期
111-115
,共5页
李健%郭冰%唐瑞阳%黄斌%张潇%李奇
李健%郭冰%唐瑞暘%黃斌%張瀟%李奇
리건%곽빙%당서양%황빈%장소%리기
脑机接口%熟悉人脸范式%P300
腦機接口%熟悉人臉範式%P300
뇌궤접구%숙실인검범식%P300
brain-computer interface%familiar face paradigm%P300
脑机接口系统是一种使大脑能够不依赖于外周神经和肌肉通道,与外部环境进行交互的系统。基于P300的脑机接口字符输入系统是脑机接口技术的一种典型应用。对基于传统范式的P300脑机接口系统进行改进,设计并实现了基于熟悉人脸范式的P300脑机接口字符输入系统。实验建立了基于熟悉人脸的P300脑机接口系统的信号采集与处理模型,对采集到的数据进行预处理、特征提取,并使用集成支持向量机算法对脑电信号进行分类。结果表明,除P300电位外,熟悉人脸范式诱发出了Vpp和N170电位。与以往传统范式80.6%的字符输入正确率相比,基于熟悉人脸范式的字符输入正确率达到93.5%,具有良好的发展前景。
腦機接口繫統是一種使大腦能夠不依賴于外週神經和肌肉通道,與外部環境進行交互的繫統。基于P300的腦機接口字符輸入繫統是腦機接口技術的一種典型應用。對基于傳統範式的P300腦機接口繫統進行改進,設計併實現瞭基于熟悉人臉範式的P300腦機接口字符輸入繫統。實驗建立瞭基于熟悉人臉的P300腦機接口繫統的信號採集與處理模型,對採集到的數據進行預處理、特徵提取,併使用集成支持嚮量機算法對腦電信號進行分類。結果錶明,除P300電位外,熟悉人臉範式誘髮齣瞭Vpp和N170電位。與以往傳統範式80.6%的字符輸入正確率相比,基于熟悉人臉範式的字符輸入正確率達到93.5%,具有良好的髮展前景。
뇌궤접구계통시일충사대뇌능구불의뢰우외주신경화기육통도,여외부배경진행교호적계통。기우P300적뇌궤접구자부수입계통시뇌궤접구기술적일충전형응용。대기우전통범식적P300뇌궤접구계통진행개진,설계병실현료기우숙실인검범식적P300뇌궤접구자부수입계통。실험건립료기우숙실인검적P300뇌궤접구계통적신호채집여처리모형,대채집도적수거진행예처리、특정제취,병사용집성지지향량궤산법대뇌전신호진행분류。결과표명,제P300전위외,숙실인검범식유발출료Vpp화N170전위。여이왕전통범식80.6%적자부수입정학솔상비,기우숙실인검범식적자부수입정학솔체도93.5%,구유량호적발전전경。
Brain-computer interface is a interactive system which can connect with the external environment without pe-ripheral nerves and muscles for people. The P300-based brain-computer interface system is a typical application of BCI technology. In this paper,we based on the conventional P300-based brain-computer interface system,designed and im-plemented a P300-based brain-computer interface with familiar face paradigm. We established signal acquisition and pro-cessing model based on familiar face paradigm. After data preprocessing and feature extraction, we used support vector machine ensemble to classify EEG signals. The results showed that P300-based brain-computer interface with familiar face paradigm evoked the Vpp and N170 potentials besides P300 potential. Compared with the conventional P300-based brain-computer interface system which the character input accuracy was 80.6%,the familiar face paradigm character in-put accuracy reached 93.5%. The results proved that P300-based brain-computer interface system with familiar face par-adigm has a good development prospect.