电子与信息学报
電子與信息學報
전자여신식학보
JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY
2015年
9期
2047-2054
,共8页
韩明%刘教民%孟军英%王震洲%王敬涛
韓明%劉教民%孟軍英%王震洲%王敬濤
한명%류교민%맹군영%왕진주%왕경도
图像处理%局部能量%符号距离约束项%水平集演化%C-V模型
圖像處理%跼部能量%符號距離約束項%水平集縯化%C-V模型
도상처리%국부능량%부호거리약속항%수평집연화%C-V모형
Image processing%Local energy%Signed distance regularization term%Level set evolution%C-V model
针对传统C-V模型对颜色不均匀图像分割失败并且对初始轮廓和位置敏感问题,以及现有符号距离正则项存在周期性振荡和局部极值问题。该文提出结合局部能量信息和改进的符号距离正则项的图像目标分割算法。首先,将全局图像信息扩展到HSV空间,并使用局部能量项信息分析每个像素及其领域内的统计特性,从而在较少的迭代次数内有效分割颜色分布不均匀图像。其次,改进现有符号距离正则项,改进后的符号距离正则项在避免水平集函数的重新初始化的同时,提高了计算效率,保证了水平集函数演化过程的稳定性。然后,定义阈值判断法的水平集函数演化的终止准则,使曲线准确演化到目标轮廓。该算法与同类模型的对比实验表明该模型具有较高的分割精度和对初始轮廓的鲁棒性。
針對傳統C-V模型對顏色不均勻圖像分割失敗併且對初始輪廓和位置敏感問題,以及現有符號距離正則項存在週期性振盪和跼部極值問題。該文提齣結閤跼部能量信息和改進的符號距離正則項的圖像目標分割算法。首先,將全跼圖像信息擴展到HSV空間,併使用跼部能量項信息分析每箇像素及其領域內的統計特性,從而在較少的迭代次數內有效分割顏色分佈不均勻圖像。其次,改進現有符號距離正則項,改進後的符號距離正則項在避免水平集函數的重新初始化的同時,提高瞭計算效率,保證瞭水平集函數縯化過程的穩定性。然後,定義閾值判斷法的水平集函數縯化的終止準則,使麯線準確縯化到目標輪廓。該算法與同類模型的對比實驗錶明該模型具有較高的分割精度和對初始輪廓的魯棒性。
침대전통C-V모형대안색불균균도상분할실패병차대초시륜곽화위치민감문제,이급현유부호거리정칙항존재주기성진탕화국부겁치문제。해문제출결합국부능량신식화개진적부호거리정칙항적도상목표분할산법。수선,장전국도상신식확전도HSV공간,병사용국부능량항신식분석매개상소급기영역내적통계특성,종이재교소적질대차수내유효분할안색분포불균균도상。기차,개진현유부호거리정칙항,개진후적부호거리정칙항재피면수평집함수적중신초시화적동시,제고료계산효솔,보증료수평집함수연화과정적은정성。연후,정의역치판단법적수평집함수연화적종지준칙,사곡선준학연화도목표륜곽。해산법여동류모형적대비실험표명해모형구유교고적분할정도화대초시륜곽적로봉성。
The uneven color image can not be segmented successfully with the traditional C-V model, and the C-V model is sensitive to the initial contour and the location. The existing signed distance regularization term has disadvantages, such as the periodic oscillation and the local extremum. This paper proposes the target segmentation algorithm, which combines the local energy information with improved signed distance regularization term. Firstly, the global image information can be expanded to the HSV space, and each pixels and its statistical properties are analyzed with the local energy information within the neighborhood, which can effectively realize the uneven distribution of color image segmentation in less iteration. Secondly, the improved signed distance regularization term avoids re-initialization of level set function, improving the computational efficiency, and maintains stability in the level set function evolution process. Finally, the termination criterion of threshold evaluation method for the level set function evolution is defined, in order to make the curve accurately evolution to the target contour. The experimental results show that the proposed algorithm has higher segmentation accuracy and robust than other similar models.