林产化学与工业
林產化學與工業
림산화학여공업
CHEMISTRY AND INDUSTRY OF FOREST PRODUCTS
2015年
4期
8-14
,共7页
薄采颖%胡立红%周静%周永红
薄採穎%鬍立紅%週靜%週永紅
박채영%호립홍%주정%주영홍
酚醛泡沫%聚氨酯预聚体%结构%机械性能%热稳定性
酚醛泡沫%聚氨酯預聚體%結構%機械性能%熱穩定性
분철포말%취안지예취체%결구%궤계성능%열은정성
phenolic foams%polyurethane prepolymer%structure%mechanical properties%thermal stability
以蓖麻油(CTO)和1,6-己二异氰酸酯(HDI)为原料合成蓖麻油基聚氨酯预聚体(COPUP),并采用COPUP对酚醛泡沫进行改性。通过FT-IR和1H NMR对COPUP结构进行了鉴定和表征,进一步采用SEM、万能试验机结合热重分析仪研究了COPUP添加量对酚醛泡沫的形态、机械性能和热稳定性的影响。结果表明:COPUP改性的酚醛泡沫泡孔均匀,但与纯酚醛泡沫相比, COPUP改性酚醛泡沫的泡孔较大,当COPUP添加量为10%时,泡沫的泡孔反而被破坏;当COPUP添加量为3%~7%时,改性酚醛泡沫与纯酚醛泡沫相比弯曲强度增加了21.05%~26.32%,比弯曲强度从5.90( kN·m)/kg增加到6.17(kN·m)/kg,高于纯酚醛泡沫4.96(kN·m)/kg;随着COPUP添加量的增加,泡沫的热稳定性略有下降。
以蓖痳油(CTO)和1,6-己二異氰痠酯(HDI)為原料閤成蓖痳油基聚氨酯預聚體(COPUP),併採用COPUP對酚醛泡沫進行改性。通過FT-IR和1H NMR對COPUP結構進行瞭鑒定和錶徵,進一步採用SEM、萬能試驗機結閤熱重分析儀研究瞭COPUP添加量對酚醛泡沫的形態、機械性能和熱穩定性的影響。結果錶明:COPUP改性的酚醛泡沫泡孔均勻,但與純酚醛泡沫相比, COPUP改性酚醛泡沫的泡孔較大,噹COPUP添加量為10%時,泡沫的泡孔反而被破壞;噹COPUP添加量為3%~7%時,改性酚醛泡沫與純酚醛泡沫相比彎麯彊度增加瞭21.05%~26.32%,比彎麯彊度從5.90( kN·m)/kg增加到6.17(kN·m)/kg,高于純酚醛泡沫4.96(kN·m)/kg;隨著COPUP添加量的增加,泡沫的熱穩定性略有下降。
이비마유(CTO)화1,6-기이이청산지(HDI)위원료합성비마유기취안지예취체(COPUP),병채용COPUP대분철포말진행개성。통과FT-IR화1H NMR대COPUP결구진행료감정화표정,진일보채용SEM、만능시험궤결합열중분석의연구료COPUP첨가량대분철포말적형태、궤계성능화열은정성적영향。결과표명:COPUP개성적분철포말포공균균,단여순분철포말상비, COPUP개성분철포말적포공교대,당COPUP첨가량위10%시,포말적포공반이피파배;당COPUP첨가량위3%~7%시,개성분철포말여순분철포말상비만곡강도증가료21.05%~26.32%,비만곡강도종5.90( kN·m)/kg증가도6.17(kN·m)/kg,고우순분철포말4.96(kN·m)/kg;수착COPUP첨가량적증가,포말적열은정성략유하강。
Castor oil-based polyurethane prepolymer( COPUP) was prepared through the reaction of castor oil (CTO) with 1,6-hexamethylene diisocyanate(HDI), then COPUP was used to modify phenolic foams(PFs). The structure of COPUP was confirmed by FT-IR and 1 H NMR. Morphological properties, mechanical properties and thermal stability of the copup-filled PFs were assessed by SEM, universal test and thermogravimetric analysis(TGA). The cell shapes of the COPUP-filled PFs were approximately symmetrical, but the cell sizes were larger than that of pristine PF. Especially, when the cell sizes of PF modified with 10 % COPUP, it became obviously heterogeneous and the bubbles collapse. Compared with that of pristine PFs, the flexural strength of PFs filled with 3% -7% COPUP increased about 21. 05% -26. 32%; and the corresponding specific flexural strength ranged from 5. 90 to 6. 17 (kN·m)/kg, which were significantly higher than that of the pristine PFs, 4. 96(kN·m)/kg. The addition of COPUP caused the decrease of the thermal stability of PFs.