国防科技大学学报
國防科技大學學報
국방과기대학학보
JOURNAL OF NATIONAL UNIVERSITY OF DEFENSE TECHNOLOGY
2015年
4期
65-70
,共6页
方民权%周海芳%张卫民%申小龙
方民權%週海芳%張衛民%申小龍
방민권%주해방%장위민%신소룡
图像处理单元%高光谱影像降维%快速独立成分分析%并行算法%性能优化
圖像處理單元%高光譜影像降維%快速獨立成分分析%併行算法%性能優化
도상처리단원%고광보영상강유%쾌속독립성분분석%병행산법%성능우화
graphic processing unit%hyperspectral image dimensionality reduction%fast independent component analysis%parallel algorithm%performance optimization
高光谱影像降维快速独立成分分析过程包含大规模矩阵运算和大量迭代计算。通过分析算法热点,设计协方差矩阵计算、白化处理、ICA迭代和IC变换等关键热点的图像处理单元映射方案,提出并实现一种G-FastICA并行算法,并基于GPU架构研究算法优化策略。实验结果显示:在处理高光谱影像降维时, CPU/GPU异构系统能获得比CPU 更高效的性能,G-FastICA算法比串行最高可获得72倍加速比,比16核CPU并行处理快4~6.5倍。
高光譜影像降維快速獨立成分分析過程包含大規模矩陣運算和大量迭代計算。通過分析算法熱點,設計協方差矩陣計算、白化處理、ICA迭代和IC變換等關鍵熱點的圖像處理單元映射方案,提齣併實現一種G-FastICA併行算法,併基于GPU架構研究算法優化策略。實驗結果顯示:在處理高光譜影像降維時, CPU/GPU異構繫統能穫得比CPU 更高效的性能,G-FastICA算法比串行最高可穫得72倍加速比,比16覈CPU併行處理快4~6.5倍。
고광보영상강유쾌속독립성분분석과정포함대규모구진운산화대량질대계산。통과분석산법열점,설계협방차구진계산、백화처리、ICA질대화IC변환등관건열점적도상처리단원영사방안,제출병실현일충G-FastICA병행산법,병기우GPU가구연구산법우화책략。실험결과현시:재처리고광보영상강유시, CPU/GPU이구계통능획득비CPU 경고효적성능,G-FastICA산법비천행최고가획득72배가속비,비16핵CPU병행처리쾌4~6.5배。
Fast independent component analysis dimensionality reduction for hyperspectral image needs a large amount of matrix and iterative computation.By analyzing hotspots of the fast independent component analysis algorithm,such as covariance matrix calculation,white processing, ICA iteration and IC transformation,a GPU-oriented mapping scheme and the optimization strategy based on GPU-oriented algorithm on memory accessing and computation-communication overlapping were proposed.The performance impact of thread-block size was also investigated. Experimental results show that better performance was obtained when dealing with the hyperspectral image dimensionality reduction problem:the GPU-oriented fast independent component analysis algorithm can reach a speedup of 72 times than the sequential code on CPU,and it runs 4~6. 5 times faster than the case when using a 16-core CPU.