中国光学
中國光學
중국광학
CHINESE JOURNAL OF OPTICS
2015年
4期
589-595
,共7页
手势检测%混合高斯背景建模%椭圆拟合%阴影去除
手勢檢測%混閤高斯揹景建模%橢圓擬閤%陰影去除
수세검측%혼합고사배경건모%타원의합%음영거제
gesture detection%Gaussian mixture background modeling%ellipse fitting%shadow removal
为了提高动态手势检测的精确度,本文将基于YCbCr颜色空间的混合高斯背景建模应用于动态手势识别中,并且提出手势阴影消除的有效算法。首先,对待检测视频帧通过抠图抠出手势图像,在YCb′Cr′颜色空间进行椭圆拟合,统计建立椭圆肤色模型,继而在YCbCr颜色空间进行混合高斯背景建模检测出动态手势,点乘原图像得到含有阴影的RGB手势图像,对检测出的含有阴影的手势图像利用已建立的椭圆肤色模型进行阴影消除,最后将手势图像连成视频序列。实验结果表明,该算法在复杂背景下进行动态手势的检测率可达91.4%,高出传统方法10%左右,能够满足动态手势检测基本要求,且具有较高的实用价值。
為瞭提高動態手勢檢測的精確度,本文將基于YCbCr顏色空間的混閤高斯揹景建模應用于動態手勢識彆中,併且提齣手勢陰影消除的有效算法。首先,對待檢測視頻幀通過摳圖摳齣手勢圖像,在YCb′Cr′顏色空間進行橢圓擬閤,統計建立橢圓膚色模型,繼而在YCbCr顏色空間進行混閤高斯揹景建模檢測齣動態手勢,點乘原圖像得到含有陰影的RGB手勢圖像,對檢測齣的含有陰影的手勢圖像利用已建立的橢圓膚色模型進行陰影消除,最後將手勢圖像連成視頻序列。實驗結果錶明,該算法在複雜揹景下進行動態手勢的檢測率可達91.4%,高齣傳統方法10%左右,能夠滿足動態手勢檢測基本要求,且具有較高的實用價值。
위료제고동태수세검측적정학도,본문장기우YCbCr안색공간적혼합고사배경건모응용우동태수세식별중,병차제출수세음영소제적유효산법。수선,대대검측시빈정통과구도구출수세도상,재YCb′Cr′안색공간진행타원의합,통계건립타원부색모형,계이재YCbCr안색공간진행혼합고사배경건모검측출동태수세,점승원도상득도함유음영적RGB수세도상,대검측출적함유음영적수세도상이용이건립적타원부색모형진행음영소제,최후장수세도상련성시빈서렬。실험결과표명,해산법재복잡배경하진행동태수세적검측솔가체91.4%,고출전통방법10%좌우,능구만족동태수세검측기본요구,차구유교고적실용개치。
To improve the accuracy of the dynamic gesture detection , Gaussian mixture background modeling based on YCbCr color space is applied to the dynamic gesture recognition , and the effective gesture shadow elimination algorithm is proposed .First of all , the gesture image is cut out from video frame to be detected , and space ellipse fitting is developed in YCb′Cr′color.Oval color model is established statistically , and then dynamic gesture in the YCbCr color space through Gaussian mixture background modeling is detected .Original image is dotted product to get the gesture RGB image containing shadows .The shadows contained in the detec-ted gestures image were eliminated by using ellopse color model , and finally we take gesture images together into a video sequence .Experimental results show that in the algorithm of dynamic gesture detection rate is 91.4% under a complex background , about 10%higher than that by the traditional methods .So it can meet the basic requirements of dynamic gesture detection , and has a high practical value .