华南理工大学学报(自然科学版)
華南理工大學學報(自然科學版)
화남리공대학학보(자연과학판)
JOURNAL OF SOUTH CHINA UNIVERSITY OF TECHNOLOGY(NATURAL SCIENCE EDITION)
2015年
6期
127-134
,共8页
矩形板%面内振动%改进傅里叶级数法%任意边界条件
矩形闆%麵內振動%改進傅裏葉級數法%任意邊界條件
구형판%면내진동%개진부리협급수법%임의변계조건
rectangular plate%in-plane vibration%improved Fourier series method%arbitrary boundary condition
采用改进傅里叶级数法( IFSM)对矩形板在任意边界下的面内自由振动特性进行了研究。将结构的位移容许函数表示为包含正弦三角级数的改进傅里叶级数,正弦三角级数的引入能够有效地解决在边界处存在的不连续或者跳跃现象;将位移容许函数的未知傅里叶展开系数看作广义变量,采用能量原理建立结构的能量泛函,结合Rayleigh-Ritz法对未知傅里叶展开系数求极值,将矩形板的面内问题转换为一个标准特征值求解问题。通过大量的数值算例,并与现有文献中解及有限元方法计算结果进行对比,验证了文中方法的正确性,结果还显示文中方法具有良好的收敛速度与计算精度。
採用改進傅裏葉級數法( IFSM)對矩形闆在任意邊界下的麵內自由振動特性進行瞭研究。將結構的位移容許函數錶示為包含正絃三角級數的改進傅裏葉級數,正絃三角級數的引入能夠有效地解決在邊界處存在的不連續或者跳躍現象;將位移容許函數的未知傅裏葉展開繫數看作廣義變量,採用能量原理建立結構的能量汎函,結閤Rayleigh-Ritz法對未知傅裏葉展開繫數求極值,將矩形闆的麵內問題轉換為一箇標準特徵值求解問題。通過大量的數值算例,併與現有文獻中解及有限元方法計算結果進行對比,驗證瞭文中方法的正確性,結果還顯示文中方法具有良好的收斂速度與計算精度。
채용개진부리협급수법( IFSM)대구형판재임의변계하적면내자유진동특성진행료연구。장결구적위이용허함수표시위포함정현삼각급수적개진부리협급수,정현삼각급수적인입능구유효지해결재변계처존재적불련속혹자도약현상;장위이용허함수적미지부리협전개계수간작엄의변량,채용능량원리건립결구적능량범함,결합Rayleigh-Ritz법대미지부리협전개계수구겁치,장구형판적면내문제전환위일개표준특정치구해문제。통과대량적수치산례,병여현유문헌중해급유한원방법계산결과진행대비,험증료문중방법적정학성,결과환현시문중방법구유량호적수렴속도여계산정도。
This paper deals with the in-plane free vibration of rectangular plates in arbitrary boundary conditions via the improved Fourier series method ( IFSM) .In the investigation , first, the admissible functions of the plate dis-placement are expressed as an improved Fourier sine series to overcome the relevant discontinuities or jumps of elas -tic boundary conditions.Then, the unknown expansion coefficients of the admissible functions are considered as generalized variables and are determined by using the Rayleigh-Ritz technique combining with the energy functional based on the energy theory .Thus, the common in-plane vibration problem is converted into a standard eigenvalue problem.Finally, the results of rectangular plates in various boundary conditions are presented and are compared with those in the literature and with those obtained by the finite element method .It is found that the proposed method is of strong reliability , good convergence and high accuracy .