燃料化学学报
燃料化學學報
연료화학학보
JOURNAL OF FUEL CHEMISTRY AND TECHNOLOGY
2015年
8期
947-954
,共8页
常国璋%黄艳琴%赖喜锐%阴秀丽%吴创之
常國璋%黃豔琴%賴喜銳%陰秀麗%吳創之
상국장%황염금%뢰희예%음수려%오창지
棕榈壳%气化焦%CO2气化%反应活性
棕櫚殼%氣化焦%CO2氣化%反應活性
종려각%기화초%CO2기화%반응활성
palm kernel shell%partially gasified chars%CO2 gasification%reactivity
850℃下,利用管式炉制备了不同转化率的棕榈壳CO2气化焦,通过热重分析仪研究了气化焦的CO2气化反应性,采用比表面积分析、拉曼光谱、X射线荧光光谱和扫描电镜-能谱等分析手段,考察了气化焦孔隙结构、碳组成、矿物元素含量与分布随转化率的变化。结果表明,在CO2气化过程中,随着转化率的提高,棕榈壳气化焦固定碳的含量逐渐降低,有序化碳的相对含量为0.30~0.33,对气化过程起到一定的抑制作用;灰分含量逐渐增加,但气化反应指数Rs呈现先降低后升高的过程。转化率小于23%时,Rs与气化焦比表面积的变化趋势一致;23%<转化率<31%时,Rs基本不变;31%<转化率<68%时,比表面积随转化率线性增加,Rs取决于孔隙比表面积、矿物元素催化2个因素的协同作用,当转化率>56%时,该催化作用变得明显,同时碳的有序化程度开始降低;转化率>68%时,Rs主要受矿物元素的催化作用控制。
850℃下,利用管式爐製備瞭不同轉化率的棕櫚殼CO2氣化焦,通過熱重分析儀研究瞭氣化焦的CO2氣化反應性,採用比錶麵積分析、拉曼光譜、X射線熒光光譜和掃描電鏡-能譜等分析手段,攷察瞭氣化焦孔隙結構、碳組成、礦物元素含量與分佈隨轉化率的變化。結果錶明,在CO2氣化過程中,隨著轉化率的提高,棕櫚殼氣化焦固定碳的含量逐漸降低,有序化碳的相對含量為0.30~0.33,對氣化過程起到一定的抑製作用;灰分含量逐漸增加,但氣化反應指數Rs呈現先降低後升高的過程。轉化率小于23%時,Rs與氣化焦比錶麵積的變化趨勢一緻;23%<轉化率<31%時,Rs基本不變;31%<轉化率<68%時,比錶麵積隨轉化率線性增加,Rs取決于孔隙比錶麵積、礦物元素催化2箇因素的協同作用,噹轉化率>56%時,該催化作用變得明顯,同時碳的有序化程度開始降低;轉化率>68%時,Rs主要受礦物元素的催化作用控製。
850℃하,이용관식로제비료불동전화솔적종려각CO2기화초,통과열중분석의연구료기화초적CO2기화반응성,채용비표면적분석、랍만광보、X사선형광광보화소묘전경-능보등분석수단,고찰료기화초공극결구、탄조성、광물원소함량여분포수전화솔적변화。결과표명,재CO2기화과정중,수착전화솔적제고,종려각기화초고정탄적함량축점강저,유서화탄적상대함량위0.30~0.33,대기화과정기도일정적억제작용;회분함량축점증가,단기화반응지수Rs정현선강저후승고적과정。전화솔소우23%시,Rs여기화초비표면적적변화추세일치;23%<전화솔<31%시,Rs기본불변;31%<전화솔<68%시,비표면적수전화솔선성증가,Rs취결우공극비표면적、광물원소최화2개인소적협동작용,당전화솔>56%시,해최화작용변득명현,동시탄적유서화정도개시강저;전화솔>68%시,Rs주요수광물원소적최화작용공제。
The palm kernel shell( PKS) chars of different conversions were prepared in a tube furnace by using CO2 as gasification agent, and the gasification reactivity of PKS chars were tested by thermogravimetry analyzer. The pore structure, degree of carbon structure ordering, mineral element content and distribution of PKS chars of different conversions were characterized by surface area measurement, Raman spectra, X-ray flourimeter( XRF) , scanning electron microscopy and energy dispersive X-ray spectroscopy(SEM-EDX), respectively. The results show that the fixed carbon content of PKS chars reduces gradually, and the proportion of ordered carbon stabilizes at 0. 30~0. 33 during CO2 gasification. The ash content increases gradually along with the increasing of conversion, but the gasification reaction index Rs of PKS chars increases after a decreased stage. At the early stage of pore size expansion ( conversion x <23%) , the change tendency of R s of PKS chars is in accordance with the surface area. As the gasification reaction continues (23%<x <31%) , Rs has few changes. The surface area of PKS chars has a linear correlation with the conversion from 31% to 68%, and R s increases with the increasing surface area and the catalysis of mineral elements as x >56%. When x >68%, the R s of PKS chars is mainly controlled by catalysis of minerals.