模式识别与人工智能
模式識彆與人工智能
모식식별여인공지능
Moshi Shibie yu Rengong Zhineng
2015年
8期
750-759
,共10页
计算机辅助诊疗%张量技术%主动外观模型%高维奇异值分
計算機輔助診療%張量技術%主動外觀模型%高維奇異值分
계산궤보조진료%장량기술%주동외관모형%고유기이치분
Computer﹣Aided Diagnosis%Tensor Technology%Active Appearance Model%Higher Order Singular Value Decomposition
三维主动外观模型将肺区的三维外观矩阵转化为一维向量时,原三维灰度分布受到破坏,分割精确度受到影响,且生成过大向量,影响分割效率。基于此,文中提出张量模式的三维主动外观模型,旨在借助高维奇异值分法直接处理肺区的三维外观矩阵,从而避免其向一维向量的转换。首先在张量理论基础上建立主动外观模型并推导参数;然后设计分块Kronecker方法确定外观张量低秩表示模式的最佳方案,以避免大规模重复计算;最后设计完整分割系统并应用在肺部CT图像中。对临床样本进实验,与其他基于标记点的三维模型对比,证明文中模型在分割精确度与效率上更优。
三維主動外觀模型將肺區的三維外觀矩陣轉化為一維嚮量時,原三維灰度分佈受到破壞,分割精確度受到影響,且生成過大嚮量,影響分割效率。基于此,文中提齣張量模式的三維主動外觀模型,旨在藉助高維奇異值分法直接處理肺區的三維外觀矩陣,從而避免其嚮一維嚮量的轉換。首先在張量理論基礎上建立主動外觀模型併推導參數;然後設計分塊Kronecker方法確定外觀張量低秩錶示模式的最佳方案,以避免大規模重複計算;最後設計完整分割繫統併應用在肺部CT圖像中。對臨床樣本進實驗,與其他基于標記點的三維模型對比,證明文中模型在分割精確度與效率上更優。
삼유주동외관모형장폐구적삼유외관구진전화위일유향량시,원삼유회도분포수도파배,분할정학도수도영향,차생성과대향량,영향분할효솔。기우차,문중제출장량모식적삼유주동외관모형,지재차조고유기이치분법직접처리폐구적삼유외관구진,종이피면기향일유향량적전환。수선재장량이론기출상건립주동외관모형병추도삼수;연후설계분괴Kronecker방법학정외관장량저질표시모식적최가방안,이피면대규모중복계산;최후설계완정분할계통병응용재폐부CT도상중。대림상양본진실험,여기타기우표기점적삼유모형대비,증명문중모형재분할정학도여효솔상경우。
In the existing 3D active appearance model (AAM), a 3D appearance matrix must be transformed into a 1D vector. Thus, the segmentation accuracy is affected by the transformation and the segmentation efficiency is affected by the generated oversize vector. For the above problems, a 3D tensor based AAM is proposed aiming at direct operating on 3 D appearances of lungs by higher order singular value decomposition, rather than transforming it from 3D to 1D. Firstly, the tensor﹣based model is built and the parameters are deduced. Then, a block﹣based Kronecker is designed to determine the optimal scheme for low rank representation of appearance tensors. This optimization avoids repeated computation. Finally, the whole segmentation system is constructed and used in the segmentation of lung images. Experimental results of clinical CT images are compared to other 3D landmark﹣based methods. The proposed model <br> performs a better result in both precision and efficiency.