模式识别与人工智能
模式識彆與人工智能
모식식별여인공지능
Moshi Shibie yu Rengong Zhineng
2015年
8期
673-679
,共7页
语音合成%单元挑选%隐马尔可夫模型%受限玻尔兹曼机
語音閤成%單元挑選%隱馬爾可伕模型%受限玻爾玆曼機
어음합성%단원도선%은마이가부모형%수한파이자만궤
Speech Synthesis%Unit Selection%Hidden Markov Model%Restricted Boltzmann Machine
提出基于受限玻尔兹曼机的频谱建模与单元挑选语音合成方法。在模型训练阶段,采用受限玻尔兹曼机对包含丰富细节的频谱特征建模,如谱包络、短时幅度谱,取代传统的使用对角方差单高斯模型和梅尔倒谱特征的频谱建模方法,改善声学模型对于频谱特征的描述能力。在语音合成阶段,使用训练得到的受限玻尔兹曼机模型计算备选样本频谱特征的对数似然值,并通过分段线性映射构建单元挑选的目标代价函数。实验表明文中方法可有效提高合成语音的自然度。
提齣基于受限玻爾玆曼機的頻譜建模與單元挑選語音閤成方法。在模型訓練階段,採用受限玻爾玆曼機對包含豐富細節的頻譜特徵建模,如譜包絡、短時幅度譜,取代傳統的使用對角方差單高斯模型和梅爾倒譜特徵的頻譜建模方法,改善聲學模型對于頻譜特徵的描述能力。在語音閤成階段,使用訓練得到的受限玻爾玆曼機模型計算備選樣本頻譜特徵的對數似然值,併通過分段線性映射構建單元挑選的目標代價函數。實驗錶明文中方法可有效提高閤成語音的自然度。
제출기우수한파이자만궤적빈보건모여단원도선어음합성방법。재모형훈련계단,채용수한파이자만궤대포함봉부세절적빈보특정건모,여보포락、단시폭도보,취대전통적사용대각방차단고사모형화매이도보특정적빈보건모방법,개선성학모형대우빈보특정적묘술능력。재어음합성계단,사용훈련득도적수한파이자만궤모형계산비선양본빈보특정적대수사연치,병통과분단선성영사구건단원도선적목표대개함수。실험표명문중방법가유효제고합성어음적자연도。
A restricted Boltzmann machine based spectrum modeling and unit selection speech synthesis method is proposed. At the model training stage, the restricted Boltzmann machine is used to model spectral features with rich details, such as spectral envelopes and short﹣time spectral amplitudes, instead of using the single Gaussian model with diagonal variance and mel﹣cepstrum feature for spectral model in the traditional approach. Thus, the description capability of the acoustical model for spectral feature is improved. At the speech synthesis stage, the restricted Boltzmann machine model is adopted to calculate the log likelihoods of spectral feature of candidate sample, and a method of piecewise linear mapping is proposed to construct target cost function for unit selection. The experimental results indicate that the proposed method can effectively improve the naturalness of synthetic speech.