计算机应用研究
計算機應用研究
계산궤응용연구
APPLICATION RESEARCH OF COMPUTERS
2015年
9期
2857-2861
,共5页
验证码%字符分割%维诺图骨架形态%自组织映射
驗證碼%字符分割%維諾圖骨架形態%自組織映射
험증마%자부분할%유낙도골가형태%자조직영사
CAPTCHA%character segmentation%Voronoi skeletonization%self-organizing maps
字符分割是验证码字符识别的关键。为了解决粘连字符构成的验证码分割成功率低的问题,提出了一种基于SOM(self-organizing maps)神经网络聚类与维诺图(Voronoi)骨架形态分析相结合的粘连字符分割算法。该算法通过连通分量区分粘连字符,然后利用Voronoi 图获得粘连字符的骨架形态,提取粘连字符的骨架特征点;根据SOM聚类后的拓扑神经元分布确定分割点,完成粘连字符骨架的分割与复原。用网络验证码图片集进行了测试,实验效果与滴水法和连通分量提取法对比显示了该分割算法的优越性。该算法对各种字符粘连类型及字体倾斜扭曲的验证码均能准确分割,为粘连字符分割提供了一种新的方法。
字符分割是驗證碼字符識彆的關鍵。為瞭解決粘連字符構成的驗證碼分割成功率低的問題,提齣瞭一種基于SOM(self-organizing maps)神經網絡聚類與維諾圖(Voronoi)骨架形態分析相結閤的粘連字符分割算法。該算法通過連通分量區分粘連字符,然後利用Voronoi 圖穫得粘連字符的骨架形態,提取粘連字符的骨架特徵點;根據SOM聚類後的拓撲神經元分佈確定分割點,完成粘連字符骨架的分割與複原。用網絡驗證碼圖片集進行瞭測試,實驗效果與滴水法和連通分量提取法對比顯示瞭該分割算法的優越性。該算法對各種字符粘連類型及字體傾斜扭麯的驗證碼均能準確分割,為粘連字符分割提供瞭一種新的方法。
자부분할시험증마자부식별적관건。위료해결점련자부구성적험증마분할성공솔저적문제,제출료일충기우SOM(self-organizing maps)신경망락취류여유낙도(Voronoi)골가형태분석상결합적점련자부분할산법。해산법통과련통분량구분점련자부,연후이용Voronoi 도획득점련자부적골가형태,제취점련자부적골가특정점;근거SOM취류후적탁복신경원분포학정분할점,완성점련자부골가적분할여복원。용망락험증마도편집진행료측시,실험효과여적수법화련통분량제취법대비현시료해분할산법적우월성。해산법대각충자부점련류형급자체경사뉴곡적험증마균능준학분할,위점련자부분할제공료일충신적방법。
Character segmentation is the point in CAPTCHA recognition.As the connected characters in CAPTCHA would be segmented with a low success rate,this paper proposed a character segmentation algorithm based on the clustering of the tou-ching region via self-organizing maps and skeletonization via Voronoi.Firstly,it used connected-component-based method to confirm connected character pairs,and selected feature points through a skeletonization process by Voronoi.Then determined the segmentation points by the neurons of SOM,leading to the final segmentation and character restoration.The results from the tests on the online CAPTCHA collections show that this algorithm achieves a better performance than the drop-fall and the con-nected-component-based algorithms.It can segment varieties of connected and distorted CAPTCHA,providing a new method for the segmentation of connected characters.