渔业科学进展
漁業科學進展
어업과학진전
MARINE FISHERIES RESEARCH
2015年
4期
35-43
,共9页
蒋增杰%杜美荣%姜绪%梁峻%赵学伟%刘毅%张媛%张晓芳%方建光
蔣增傑%杜美榮%薑緒%樑峻%趙學偉%劉毅%張媛%張曉芳%方建光
장증걸%두미영%강서%량준%조학위%류의%장원%장효방%방건광
粒径结构%浮游植物%微食物环%虾夷扇贝%獐子岛
粒徑結構%浮遊植物%微食物環%蝦夷扇貝%獐子島
립경결구%부유식물%미식물배%하이선패%장자도
Size-fraction%Phytoplankton%Microbial food loop%Patinopecten yessoensis%Zhangzidao Island
根据2011年6月、10月、12月和2012年4月4个航次对獐子岛海域水温、分粒径 Chl a浓度、透明度等参数的调查数据,分析了该海域 Chl a 浓度的时空变化特征,探讨了浮游植物的粒径结构、光合固碳能力及碳流途径。研究结果显示,獐子岛海域表、底层 Chl a 浓度年变化范围分别为0.07–6.28μg/L 和0.16–5.28μg/L,年平均浓度分别为(1.60±1.38)μg/L 和(1.31±1.10)μg/L,存在显著的季节差异(P<0.05)和空间分布的不均匀性,表、底层 Chl a 含量秋、春季节差异极显著(P<0.01)。表、底层浮游植物粒径组成均以微型浮游植物(Nano-phytoplankton)为主,贡献率分别为50.85%和44.64%。典范对应分析(CCA)结果表明,NO3-、PO43-和 NH4+的3种形态无机营养盐对微型浮游植物有显著的影响,而水温和 NO2-对微微型浮游植物(Pico-phytoplankton)影响显著。该海域初级生产力变化范围为40.31–1017.64 mg C/(m2·d),平均为(386.07±281.80) mg C/(m2·d)。超过38.3%的总初级生产通过微食物环向高营养级传递并入经典食物链,微食物环在獐子岛虾夷扇贝养殖生态系统中扮演着重要角色。
根據2011年6月、10月、12月和2012年4月4箇航次對獐子島海域水溫、分粒徑 Chl a濃度、透明度等參數的調查數據,分析瞭該海域 Chl a 濃度的時空變化特徵,探討瞭浮遊植物的粒徑結構、光閤固碳能力及碳流途徑。研究結果顯示,獐子島海域錶、底層 Chl a 濃度年變化範圍分彆為0.07–6.28μg/L 和0.16–5.28μg/L,年平均濃度分彆為(1.60±1.38)μg/L 和(1.31±1.10)μg/L,存在顯著的季節差異(P<0.05)和空間分佈的不均勻性,錶、底層 Chl a 含量鞦、春季節差異極顯著(P<0.01)。錶、底層浮遊植物粒徑組成均以微型浮遊植物(Nano-phytoplankton)為主,貢獻率分彆為50.85%和44.64%。典範對應分析(CCA)結果錶明,NO3-、PO43-和 NH4+的3種形態無機營養鹽對微型浮遊植物有顯著的影響,而水溫和 NO2-對微微型浮遊植物(Pico-phytoplankton)影響顯著。該海域初級生產力變化範圍為40.31–1017.64 mg C/(m2·d),平均為(386.07±281.80) mg C/(m2·d)。超過38.3%的總初級生產通過微食物環嚮高營養級傳遞併入經典食物鏈,微食物環在獐子島蝦夷扇貝養殖生態繫統中扮縯著重要角色。
근거2011년6월、10월、12월화2012년4월4개항차대장자도해역수온、분립경 Chl a농도、투명도등삼수적조사수거,분석료해해역 Chl a 농도적시공변화특정,탐토료부유식물적립경결구、광합고탄능력급탄류도경。연구결과현시,장자도해역표、저층 Chl a 농도년변화범위분별위0.07–6.28μg/L 화0.16–5.28μg/L,년평균농도분별위(1.60±1.38)μg/L 화(1.31±1.10)μg/L,존재현저적계절차이(P<0.05)화공간분포적불균균성,표、저층 Chl a 함량추、춘계절차이겁현저(P<0.01)。표、저층부유식물립경조성균이미형부유식물(Nano-phytoplankton)위주,공헌솔분별위50.85%화44.64%。전범대응분석(CCA)결과표명,NO3-、PO43-화 NH4+적3충형태무궤영양염대미형부유식물유현저적영향,이수온화 NO2-대미미형부유식물(Pico-phytoplankton)영향현저。해해역초급생산력변화범위위40.31–1017.64 mg C/(m2·d),평균위(386.07±281.80) mg C/(m2·d)。초과38.3%적총초급생산통과미식물배향고영양급전체병입경전식물련,미식물배재장자도하이선패양식생태계통중분연착중요각색。
To investigate the seasonal and spatial distribution of phytoplankton in terms of Chlorophyll a (Chl a) in the scallop Patinopecten yessoensis aquaculture area of Zhangzidao island, northern China, four filed investigations were conducted in June 2011, October 2011, December 2011 and April 2012. Chl a was further divided into pico-phytoplankton (< 2 μm), nano-phytoplankton (2-20 μm) and micro-phytoplankton (>20 μm) size fractions. Results showed that the concentration of Chl a in the surface and bottom seawater of Zhangzidao area ranged from 0.07-6.28 μg/L and 0.16-5.28 μg/L, respectively, and the related average was (1.60±1.38) and (1.31±1.10) μg/L. There were significant differences in the concentration of Chl a among different seasons (P<0.05). The differences of Chl a’s concentration between surface and bottom seawater were highly significant during autumn and spring (P<0.01). Nano-phytoplankton was the most important size-fraction regardless of surface and bottom seawater and accounted for 50.85% and 44.64% of the total phytoplankton, respectively. CCA analysis of the main environmental factors showed that NO3-, PO43- and NH4+ contributed greatly to nano-phytop-lankton while seawater temperature and NO2- gave a great contribution to pico-phytoplankton. The annual photosynthetically produced particulate organic carbon (PPOC) in this area ranged from 40.31 to 1017.64 mg C/(m2·d) with an average value of (386.07±281.80) mg C/(m2·d). More than 38.3% of the fixed carbons by the photosynthesis were taken by the classical food web via the microbial food loop. These results highlight the important role of the microbial loop in aquaculture system of Zhangzidao coastal area.