计算机应用研究
計算機應用研究
계산궤응용연구
APPLICATION RESEARCH OF COMPUTERS
2015年
9期
2639-2642
,共4页
支持向量机%流形判别分析%分布特征%边界信息%局部信息
支持嚮量機%流形判彆分析%分佈特徵%邊界信息%跼部信息
지지향량궤%류형판별분석%분포특정%변계신식%국부신식
support vector machine%manifold-based discriminant analysis(MDA)%distribution characteristics%boundary information%local information
尽管经典分类方法支持向量机SVM在各领域广泛应用,但其在分类决策时仅关注类间间隔而忽视类内分布,因而分类能力有限。鉴于此,Zafeiriou等人提出最小类方差支持向量机MCVSVM,该方法建立在支持向量机和线性判别分析的基础上,在进行分类决策时同时考虑各类的边界信息和分布特征,因而较之SVM具有更优的泛化能力。但上述两种方法均忽略了样本的局部特征。基于上述分析,在流形判别分析的基础上提出基于最小流形类内离散度的支持向量机SVM-M2 WCS。该方法在建立最优分类面时,不仅考虑各类的边界信息和分布特征,而且还保持了各类的局部流形结构。经理论分析可得该方法在一定条件下与SVM和MCVSVM等价,这表明SVM-M2 WCS较之SVM和MCVSVM具有更优的泛化能力。人工数据集及标准数据集上的比较实验表明SVM-M2 WCS的有效性。
儘管經典分類方法支持嚮量機SVM在各領域廣汎應用,但其在分類決策時僅關註類間間隔而忽視類內分佈,因而分類能力有限。鑒于此,Zafeiriou等人提齣最小類方差支持嚮量機MCVSVM,該方法建立在支持嚮量機和線性判彆分析的基礎上,在進行分類決策時同時攷慮各類的邊界信息和分佈特徵,因而較之SVM具有更優的汎化能力。但上述兩種方法均忽略瞭樣本的跼部特徵。基于上述分析,在流形判彆分析的基礎上提齣基于最小流形類內離散度的支持嚮量機SVM-M2 WCS。該方法在建立最優分類麵時,不僅攷慮各類的邊界信息和分佈特徵,而且還保持瞭各類的跼部流形結構。經理論分析可得該方法在一定條件下與SVM和MCVSVM等價,這錶明SVM-M2 WCS較之SVM和MCVSVM具有更優的汎化能力。人工數據集及標準數據集上的比較實驗錶明SVM-M2 WCS的有效性。
진관경전분류방법지지향량궤SVM재각영역엄범응용,단기재분류결책시부관주류간간격이홀시류내분포,인이분류능력유한。감우차,Zafeiriou등인제출최소류방차지지향량궤MCVSVM,해방법건립재지지향량궤화선성판별분석적기출상,재진행분류결책시동시고필각류적변계신식화분포특정,인이교지SVM구유경우적범화능력。단상술량충방법균홀략료양본적국부특정。기우상술분석,재류형판별분석적기출상제출기우최소류형류내리산도적지지향량궤SVM-M2 WCS。해방법재건립최우분류면시,불부고필각류적변계신식화분포특정,이차환보지료각류적국부류형결구。경이론분석가득해방법재일정조건하여SVM화MCVSVM등개,저표명SVM-M2 WCS교지SVM화MCVSVM구유경우적범화능력。인공수거집급표준수거집상적비교실험표명SVM-M2 WCS적유효성。
Support vector machine (SVM)is one of the most popular classification methods and widely used in practice.But with the development of application,it encounters a problem which seriously limits the classification efficiency:it only focuses on the margin between classes,but ignores the class distributions.In order to solve the above problem,this paper proposed min-imum class variance support vector machine (MCVSVM)by Zafeiriou and considered boundary information and distribution characteristics and therefore its classification efficiency was much better than SVM.The local characteristics of each class was quite important but it was regrettable that it was neglected by both SVM and MCVSVM.In view of this,this paper proposed support vector machine based on minimum manifold-based within-class scatter (SVM-M2 WCS ).The theoretical and experi-mental analysis shows the effectiveness of our proposed methods.