计算机应用研究
計算機應用研究
계산궤응용연구
APPLICATION RESEARCH OF COMPUTERS
2015年
9期
2622-2625,2642
,共5页
马家辰%胡佳俊%马立勇%孙明健
馬傢辰%鬍佳俊%馬立勇%孫明健
마가신%호가준%마립용%손명건
有源噪声控制%粒子群优化%次级声通道
有源譟聲控製%粒子群優化%次級聲通道
유원조성공제%입자군우화%차급성통도
active noise control%particle swarm optimization(PSO)%secondary path
为提高基于粒子群算法的有源噪声控制(ANC)系统的性能,提出一种改进型重新初始化粒子群算法(MRPSO)。该算法充分利用粒子个体最优信息,并动态改变其惯性权重,从而增强了种群的多样性,提高了算法的收敛速度和全局优化能力。针对ANC系统的时变特性,该算法通过重新初始化粒子以应对声通道的突变。以对误差信号的逐个采样为基础,介绍了基于MRPSO算法的有源噪声控制方法。该方法无须估计次级声通道,但可以有效降低噪声信号,提高信噪比。通过与已有算法的比较,结果表明MRPSO算法在全局收敛速度和优化精度上有显著的提升,同时,MRPSO算法应对声通道突变的能力也优于其他两种算法。
為提高基于粒子群算法的有源譟聲控製(ANC)繫統的性能,提齣一種改進型重新初始化粒子群算法(MRPSO)。該算法充分利用粒子箇體最優信息,併動態改變其慣性權重,從而增彊瞭種群的多樣性,提高瞭算法的收斂速度和全跼優化能力。針對ANC繫統的時變特性,該算法通過重新初始化粒子以應對聲通道的突變。以對誤差信號的逐箇採樣為基礎,介紹瞭基于MRPSO算法的有源譟聲控製方法。該方法無鬚估計次級聲通道,但可以有效降低譟聲信號,提高信譟比。通過與已有算法的比較,結果錶明MRPSO算法在全跼收斂速度和優化精度上有顯著的提升,同時,MRPSO算法應對聲通道突變的能力也優于其他兩種算法。
위제고기우입자군산법적유원조성공제(ANC)계통적성능,제출일충개진형중신초시화입자군산법(MRPSO)。해산법충분이용입자개체최우신식,병동태개변기관성권중,종이증강료충군적다양성,제고료산법적수렴속도화전국우화능력。침대ANC계통적시변특성,해산법통과중신초시화입자이응대성통도적돌변。이대오차신호적축개채양위기출,개소료기우MRPSO산법적유원조성공제방법。해방법무수고계차급성통도,단가이유효강저조성신호,제고신조비。통과여이유산법적비교,결과표명MRPSO산법재전국수렴속도화우화정도상유현저적제승,동시,MRPSO산법응대성통도돌변적능력야우우기타량충산법。
To enhance the performance of the active noise control (ANC)system based on particle swarm optimization algo-rithm,this paper proposed a modified reinitialized particle swarm optimization (MRPSO)algorithm.By taking full advantage of individual optimal information of all particles and dynamically changing the inertia weight,it enhanced the diversity of popula-tion and improved the convergence speed and global optimization ability.Considering the time-varying characteristics of ANC system,it reinitialized the particle to deal with the mutations of acoustic path.A MRPSO-based ANC method,worked on a sam-ple-by-sample principle without estimating the secondary path,could reduce the noise and improve the SNR.Simulation results show that the MRPSO algorithm can converge faster and more accurately,while it also has better ability to suit to the mutations of acoustic path than the other two algorithms.