北京生物医学工程
北京生物醫學工程
북경생물의학공정
BEIJING BIOMEDICAL ENGINEERING
2015年
4期
331-339
,共9页
陈佳%王得水%谷凯云%高斌%万峰%常宇
陳佳%王得水%穀凱雲%高斌%萬峰%常宇
진가%왕득수%곡개운%고빈%만봉%상우
心力衰竭%人工心脏泵辅助%计算流体力学%血流动力学
心力衰竭%人工心髒泵輔助%計算流體力學%血流動力學
심력쇠갈%인공심장빙보조%계산류체역학%혈류동역학
heart failure%artificial heart blood pump assisted%computational fluid dynamics%hemodynamics
目的:采用数值模拟方法研究人工心脏辅助装置植入对左心室内血流动力学的影响。方法首先利用心血管集中参数模型获取了健康状态、心衰状态以及人工心脏泵辅助状态下收缩末期左心室三维几何模型,其中选取超弹性材料 Ogden 为心肌材料,以左心房压力,主动脉压力以及通过左心室容积计算获取的左心室壁面位移作为边界条件,利用 CFD 方法对上述三种情况进行左心室的数值模拟。同时对比了健康时的模拟结果和生理状态下的左心室压力,以及心衰和人工心脏泵辅助两种状态下的血流动力学指标的差别。通过左心室压力和流速等评价灌注和负荷的情况,通过壁面切应力和涡流,评价人工心脏泵辅助后的左心室血流动力学变化规律。结果健康状态下模拟的左心室压力与生理指标相符合。在心衰和人工心脏泵辅助状态下,收缩期内左心室压力与健康状态比分别降低了1718 Pa和8455 Pa,辅助后左心室最大压力下降速度高于心衰时。人工心脏泵辅助后,舒张期壁面切应力峰值由4.3 Pa 降低至3.8 Pa,收缩期壁面切应力峰值由4.1 Pa 降低至1.3 Pa,射血速度峰值由1.61 m / s 降低至0.68 m / s,主动脉瓣开放时间由0.25 s 增加至0.65 s,左室射血分数由43.6%增加至52.7%,心室底端漩涡持续时间由0.35 s 增加至0.51 s,顶端漩涡出现血流分离。结论左心室压力对比表明本研究方法可以用来模拟左心室的行为。人工心脏泵辅助能够快速降低心室内压力和心室负荷,增加灌注时间,提高器官灌注,降低左心室壁面切应力以及提高左心室内血液流场的涡流强度,延长涡流持续时间。
目的:採用數值模擬方法研究人工心髒輔助裝置植入對左心室內血流動力學的影響。方法首先利用心血管集中參數模型穫取瞭健康狀態、心衰狀態以及人工心髒泵輔助狀態下收縮末期左心室三維幾何模型,其中選取超彈性材料 Ogden 為心肌材料,以左心房壓力,主動脈壓力以及通過左心室容積計算穫取的左心室壁麵位移作為邊界條件,利用 CFD 方法對上述三種情況進行左心室的數值模擬。同時對比瞭健康時的模擬結果和生理狀態下的左心室壓力,以及心衰和人工心髒泵輔助兩種狀態下的血流動力學指標的差彆。通過左心室壓力和流速等評價灌註和負荷的情況,通過壁麵切應力和渦流,評價人工心髒泵輔助後的左心室血流動力學變化規律。結果健康狀態下模擬的左心室壓力與生理指標相符閤。在心衰和人工心髒泵輔助狀態下,收縮期內左心室壓力與健康狀態比分彆降低瞭1718 Pa和8455 Pa,輔助後左心室最大壓力下降速度高于心衰時。人工心髒泵輔助後,舒張期壁麵切應力峰值由4.3 Pa 降低至3.8 Pa,收縮期壁麵切應力峰值由4.1 Pa 降低至1.3 Pa,射血速度峰值由1.61 m / s 降低至0.68 m / s,主動脈瓣開放時間由0.25 s 增加至0.65 s,左室射血分數由43.6%增加至52.7%,心室底耑漩渦持續時間由0.35 s 增加至0.51 s,頂耑漩渦齣現血流分離。結論左心室壓力對比錶明本研究方法可以用來模擬左心室的行為。人工心髒泵輔助能夠快速降低心室內壓力和心室負荷,增加灌註時間,提高器官灌註,降低左心室壁麵切應力以及提高左心室內血液流場的渦流彊度,延長渦流持續時間。
목적:채용수치모의방법연구인공심장보조장치식입대좌심실내혈류동역학적영향。방법수선이용심혈관집중삼수모형획취료건강상태、심쇠상태이급인공심장빙보조상태하수축말기좌심실삼유궤하모형,기중선취초탄성재료 Ogden 위심기재료,이좌심방압력,주동맥압력이급통과좌심실용적계산획취적좌심실벽면위이작위변계조건,이용 CFD 방법대상술삼충정황진행좌심실적수치모의。동시대비료건강시적모의결과화생리상태하적좌심실압력,이급심쇠화인공심장빙보조량충상태하적혈류동역학지표적차별。통과좌심실압력화류속등평개관주화부하적정황,통과벽면절응력화와류,평개인공심장빙보조후적좌심실혈류동역학변화규률。결과건강상태하모의적좌심실압력여생리지표상부합。재심쇠화인공심장빙보조상태하,수축기내좌심실압력여건강상태비분별강저료1718 Pa화8455 Pa,보조후좌심실최대압력하강속도고우심쇠시。인공심장빙보조후,서장기벽면절응력봉치유4.3 Pa 강저지3.8 Pa,수축기벽면절응력봉치유4.1 Pa 강저지1.3 Pa,사혈속도봉치유1.61 m / s 강저지0.68 m / s,주동맥판개방시간유0.25 s 증가지0.65 s,좌실사혈분수유43.6%증가지52.7%,심실저단선와지속시간유0.35 s 증가지0.51 s,정단선와출현혈류분리。결론좌심실압력대비표명본연구방법가이용래모의좌심실적행위。인공심장빙보조능구쾌속강저심실내압력화심실부하,증가관주시간,제고기관관주,강저좌심실벽면절응력이급제고좌심실내혈액류장적와류강도,연장와류지속시간。
Objective This work focused on the hemodynamic( velocity,pressure,wall shear stress, vortex)effect of artificial heart blood pump on the left ventricle by the means of numerical simulation. Methods The left atrial pressure,aortic pressure and the left ventricular volume of the 3 situations( healthy,heart failure,assisted)were derived from the lumped parameter cardiovascular model,which was used as the boundary conditions. Then we used the volume data to build 3D geometry models of the 3 situations at end-systole phase. In the work,the hyper-elastic material Ogden was chosen to stand for myocardium. We carried out the numerical simulation by the means of computational fluid dynamics( CFD ),compared the left ventricular pressure ( LVP)in simulation and physiology,and the hemodynamic index between the heart failure(HF)and artificial heart blood pump assisted situations. The LVP and the velocity were used to evaluate the perfusion and ventricular unloading,while the wall shear stress( WSS)and vortex were used to evaluate the flow pattern. Results The LVP of the simulation and the physiology in healthy situation were the same. The pressure dropped 1788 Pa and 1455 Pa respectively in heart failure and assisted situations during the systole and the pressure drop speed was much higher in assisted situation. The peak WSS were 4. 3 Pa and 3. 8 Pa during diastole,4. 1 Pa and 1. 3 Pa during systole in HF and assisted situations. The peak velocities were 1. 61 m / s and 0. 68 m / s in HF and assisted situations during systole,yet the duration of ejecting were 0. 25 s and 0. 65 s. As a result, the left ventricular ejection fraction(LVEF)increased from 43. 6% to 52. 7%. The existence duration of lower vortex increased from 0. 35 s to 0. 51 s in HF and assisted situations,and the blood separated from the upper vortex in assisted situation. Conclusions The LVP in simulation and physiology were the same,demonstrating the simulation method available. The artificial heart blood pump assisted can help to decrease the LVP and the ventricular load,extend the ejecting duration and improve perfusion. What’s more,it can reduce the WSS, enhance the vortex and extend the duration of vortex existence.