工程科学学报
工程科學學報
공정과학학보
Journal of University of Science and Technology Beijing
2015年
8期
994-999
,共6页
刘梅%吕学伟%白晨光%邓青宇%宋晶晶
劉梅%呂學偉%白晨光%鄧青宇%宋晶晶
류매%려학위%백신광%산청우%송정정
红土镍矿%脱水%热分析%动力学%活化能
紅土鎳礦%脫水%熱分析%動力學%活化能
홍토얼광%탈수%열분석%동역학%활화능
nickel laterite%dewatering%thermal analysis%kinetics%activation energy
在升温速率分别为10、15、20和25℃·min-1的条件下,利用差示扫描量热仪对红土镍矿非自由水脱除过程进行了测试.针对测试数据,分别采用Flynn-Wall-Ozawa ( FWO)法、胡荣祖-高红旭-张海( HuGZ)法、Boswell法、Starink法、Friedman-Reich-Levi ( Friedman)法等不同的转化率法计算其活化能,利用Malek法计算指前因子( A)以及确定机理函数,最后利用所得的动力学公式推导出等温下反应进度与时间的关系并对不同温度下的能耗进行分析比较.红土镍矿非自由水脱除过程的平均活化能为181.50 kJ·mol-1;指前因子lnA为21.95 min-1;机理函数符合Z-L-T方程,即脱除过程为三维扩散控制机制;干燥温度越高所需的平均功率越小.
在升溫速率分彆為10、15、20和25℃·min-1的條件下,利用差示掃描量熱儀對紅土鎳礦非自由水脫除過程進行瞭測試.針對測試數據,分彆採用Flynn-Wall-Ozawa ( FWO)法、鬍榮祖-高紅旭-張海( HuGZ)法、Boswell法、Starink法、Friedman-Reich-Levi ( Friedman)法等不同的轉化率法計算其活化能,利用Malek法計算指前因子( A)以及確定機理函數,最後利用所得的動力學公式推導齣等溫下反應進度與時間的關繫併對不同溫度下的能耗進行分析比較.紅土鎳礦非自由水脫除過程的平均活化能為181.50 kJ·mol-1;指前因子lnA為21.95 min-1;機理函數符閤Z-L-T方程,即脫除過程為三維擴散控製機製;榦燥溫度越高所需的平均功率越小.
재승온속솔분별위10、15、20화25℃·min-1적조건하,이용차시소묘량열의대홍토얼광비자유수탈제과정진행료측시.침대측시수거,분별채용Flynn-Wall-Ozawa ( FWO)법、호영조-고홍욱-장해( HuGZ)법、Boswell법、Starink법、Friedman-Reich-Levi ( Friedman)법등불동적전화솔법계산기활화능,이용Malek법계산지전인자( A)이급학정궤리함수,최후이용소득적동역학공식추도출등온하반응진도여시간적관계병대불동온도하적능모진행분석비교.홍토얼광비자유수탈제과정적평균활화능위181.50 kJ·mol-1;지전인자lnA위21.95 min-1;궤리함수부합Z-L-T방정,즉탈제과정위삼유확산공제궤제;간조온도월고소수적평균공솔월소.
Differential scanning calorimetric ( DSC) data during non-free water removal in nickel laterite were determined with a NETZSCH STA 449C thermal analyzer. Experiments were carried out at four heating rates of 10, 15, 20 and 25℃·min-1 . According to these DSC curves at different heating rates, the activation energies were calculated by five different calculation methods of conversion rate, namely the Flynn-Wall-Ozawa ( FWO) , Hu-Gao-Zhang ( HuGZ) , Boswell, Starink, and Friedman-Reich-Levi ( Friedman) methods. The pre-exponential factor ( A) and the most probable mechanism function were determined by the Malek method, then the relationship between reaction degree and time under an isothermal condition was derived and the energy consumptions at different temperatures were analyzed and compared. The average activation energy of non-free water removal in nickel laterite is 181. 50 kJ· mol-1. The average lnA is 21. 95 min-1. The most probable mechanism function fits the Zhuralev- Lesokin- Tempelman (Z-L-T) equation well. The non-free water removal is controlled by three-dimensional diffusion. The average power decreases with increasing temperature.