计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2015年
18期
169-174
,共6页
马陈%李钢%张仁斌%张慧君%秦亚军%谢昭
馬陳%李鋼%張仁斌%張慧君%秦亞軍%謝昭
마진%리강%장인빈%장혜군%진아군%사소
视觉统计概率模型%支持向量机(SVM)%自然图像抠图%无监督抠图
視覺統計概率模型%支持嚮量機(SVM)%自然圖像摳圖%無鑑督摳圖
시각통계개솔모형%지지향량궤(SVM)%자연도상구도%무감독구도
visual statistical probabilistic models%Support Vector Machine(SVM)%natural image matting%unsupervised matting
针对无监督抠图因视觉信息较少而存在抠图结果视觉偏差较大的问题,提出一种基于视觉统计概率的无监督抠图模型。该方法根据视觉统计概率模型训练SVM分类器,得到区分背景区域与视觉显著度较高的前景目标区域的SIFT特征点,根据特征点生成结构合理的Trimap,并利用Trimap实现无监督抠图。实验结果表明,在无用户交互的情况下,该模型生成的α掩像无较大视觉偏差,对前景目标边缘及透明度做出良好估计并且具有较好的鲁棒性。
針對無鑑督摳圖因視覺信息較少而存在摳圖結果視覺偏差較大的問題,提齣一種基于視覺統計概率的無鑑督摳圖模型。該方法根據視覺統計概率模型訓練SVM分類器,得到區分揹景區域與視覺顯著度較高的前景目標區域的SIFT特徵點,根據特徵點生成結構閤理的Trimap,併利用Trimap實現無鑑督摳圖。實驗結果錶明,在無用戶交互的情況下,該模型生成的α掩像無較大視覺偏差,對前景目標邊緣及透明度做齣良好估計併且具有較好的魯棒性。
침대무감독구도인시각신식교소이존재구도결과시각편차교대적문제,제출일충기우시각통계개솔적무감독구도모형。해방법근거시각통계개솔모형훈련SVM분류기,득도구분배경구역여시각현저도교고적전경목표구역적SIFT특정점,근거특정점생성결구합리적Trimap,병이용Trimap실현무감독구도。실험결과표명,재무용호교호적정황하,해모형생성적α엄상무교대시각편차,대전경목표변연급투명도주출량호고계병차구유교호적로봉성。
According to the problem of the large visual deviation of matting results due to the less visual information, an unsupervised-matting model based on the visual statistical probability is proposed. The method trains SVM classifier based on the above model to get the SIFT feature point which distinguishes the background area and the higher visual degree foreground target area. And then it generates well-structured Trimap according to the feature points. The unsupervised-matting is achieved by the use of Trimap. Experimental results show that in the case of without user interaction, the model generates α mask without large visual deviation, makes good estimate of the foreground object edges and transparency and has better robustness.