电子学报
電子學報
전자학보
ACTA ELECTRONICA SINICA
2015年
8期
1616-1620
,共5页
连铸%模型%CCD 测温仪%测温
連鑄%模型%CCD 測溫儀%測溫
련주%모형%CCD 측온의%측온
continuous casting%model%CCD thermometer%temperature measurement
连铸生产过程中,铸坯内部温度场无法实时测量,表面温度难于准确测量,而稳态传热模型不能模拟实际工艺参数频繁变化的浇注过程,本文建立了实时凝固传热模型,并对模型的影响因素进行了分析。考虑到铸坯表面随机剥离的氧化铁皮对其测温的干扰,研究建立了基于面阵的 CCD 测温系统,并结合数值分析方法,消除了铸坯表面氧化铁皮对测温的干扰,还原铸坯表面真实温度,使测量的铸坯表面温度波动在±10℃范围内。通过采用 CCD 面阵测温、射钉测厚以及数值分析方法,实现了基于多信息融合的铸坯温度场在线测量,为二冷配水动态优化和铸坯温度场闭环控制提供了基础。
連鑄生產過程中,鑄坯內部溫度場無法實時測量,錶麵溫度難于準確測量,而穩態傳熱模型不能模擬實際工藝參數頻繁變化的澆註過程,本文建立瞭實時凝固傳熱模型,併對模型的影響因素進行瞭分析。攷慮到鑄坯錶麵隨機剝離的氧化鐵皮對其測溫的榦擾,研究建立瞭基于麵陣的 CCD 測溫繫統,併結閤數值分析方法,消除瞭鑄坯錶麵氧化鐵皮對測溫的榦擾,還原鑄坯錶麵真實溫度,使測量的鑄坯錶麵溫度波動在±10℃範圍內。通過採用 CCD 麵陣測溫、射釘測厚以及數值分析方法,實現瞭基于多信息融閤的鑄坯溫度場在線測量,為二冷配水動態優化和鑄坯溫度場閉環控製提供瞭基礎。
련주생산과정중,주배내부온도장무법실시측량,표면온도난우준학측량,이은태전열모형불능모의실제공예삼수빈번변화적요주과정,본문건립료실시응고전열모형,병대모형적영향인소진행료분석。고필도주배표면수궤박리적양화철피대기측온적간우,연구건립료기우면진적 CCD 측온계통,병결합수치분석방법,소제료주배표면양화철피대측온적간우,환원주배표면진실온도,사측량적주배표면온도파동재±10℃범위내。통과채용 CCD 면진측온、사정측후이급수치분석방법,실현료기우다신식융합적주배온도장재선측량,위이랭배수동태우화화주배온도장폐배공제제공료기출。
In the continuous casting process,the internal temperature of billet is difficult to be measured real-time and the surface temperature is difficult to be measured accurately.The steady-state heat transfer models can’t be used for simulation the ac-tual casting operations which vary frequently.A real-time heat transfer model was developed,especially the influencing factors of model were analyzed.Considering the interference of scales which strip randomly on the billet surface to the temperature measure-ment,the CCD (charge coupled device)surface temperature measurement system was developed.Combined with numerical analysis method,the real temperatures of billet were restored.The impact of scales was effectively eliminated and the fluctuation of measured surface temperature within the range of ±10℃.The temperature field measurement of billet was realized based on multi-informa-tion fusion of CCD temperature measurement system,measured shell thickness and numerical analysis method.This provides the ba-sis that the surface temperatures take into account to closed-loop control and dynamic optimization water distribution.