计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2015年
18期
90-93,208
,共5页
网络控制系统%自适应模糊神经网络控制%比例积分微分(PID)控制器%TrueTime
網絡控製繫統%自適應模糊神經網絡控製%比例積分微分(PID)控製器%TrueTime
망락공제계통%자괄응모호신경망락공제%비례적분미분(PID)공제기%TrueTime
network control system%adaptive fuzzy neural network control%Proportion Integration Differentiation(PID) controller%TrueTime
网络控制系统中存在着时延、丢包、网络干扰等问题。针对网络控制系统中存在恶化系统的控制性能,甚至导致系统不稳定的因素,提出了一种基于自适应模糊神经网络控制器的网络控制系统,它能根据系统的实际输出与期望输出误差,利用自适应模糊控制和神经网络自学习的原理进行控制参数的自行调整,以符合控制系统的实际要求,同时,分析了网络延时,丢包率及网络干扰因素对系统性能的影响。利用TrueTime工具箱建立了包含自适应模糊神经网络控制器的网络控制系统的仿真模型,并将其分别与基于常规PID控制器的网络控制系统和基于模糊参数PID控制器的网络控制系统进行了比较。实验结果表明,在相同的网络环境下,基于自适应模糊神经网络控制器的网络控制系统的控制效果比基于常规的PID控制器和基于模糊参数PID控制器的要好,且具有较好的抗干扰能力和鲁棒性能。
網絡控製繫統中存在著時延、丟包、網絡榦擾等問題。針對網絡控製繫統中存在噁化繫統的控製性能,甚至導緻繫統不穩定的因素,提齣瞭一種基于自適應模糊神經網絡控製器的網絡控製繫統,它能根據繫統的實際輸齣與期望輸齣誤差,利用自適應模糊控製和神經網絡自學習的原理進行控製參數的自行調整,以符閤控製繫統的實際要求,同時,分析瞭網絡延時,丟包率及網絡榦擾因素對繫統性能的影響。利用TrueTime工具箱建立瞭包含自適應模糊神經網絡控製器的網絡控製繫統的倣真模型,併將其分彆與基于常規PID控製器的網絡控製繫統和基于模糊參數PID控製器的網絡控製繫統進行瞭比較。實驗結果錶明,在相同的網絡環境下,基于自適應模糊神經網絡控製器的網絡控製繫統的控製效果比基于常規的PID控製器和基于模糊參數PID控製器的要好,且具有較好的抗榦擾能力和魯棒性能。
망락공제계통중존재착시연、주포、망락간우등문제。침대망락공제계통중존재악화계통적공제성능,심지도치계통불은정적인소,제출료일충기우자괄응모호신경망락공제기적망락공제계통,타능근거계통적실제수출여기망수출오차,이용자괄응모호공제화신경망락자학습적원리진행공제삼수적자행조정,이부합공제계통적실제요구,동시,분석료망락연시,주포솔급망락간우인소대계통성능적영향。이용TrueTime공구상건립료포함자괄응모호신경망락공제기적망락공제계통적방진모형,병장기분별여기우상규PID공제기적망락공제계통화기우모호삼수PID공제기적망락공제계통진행료비교。실험결과표명,재상동적망락배경하,기우자괄응모호신경망락공제기적망락공제계통적공제효과비기우상규적PID공제기화기우모호삼수PID공제기적요호,차구유교호적항간우능력화로봉성능。
Time delay, loss of the data packet and disturbance exist in the network control system. For solving this prob-lem, a new network system based on adaptive fuzzy neural network controller is proposed. According to the error of the system between the actual output and the predicted output, this controller can be adjusted to conform to the requirements of the system by the principle of adaptive fuzzy control and self-learning of neural network control. And the main factors influencing the performance of this system, including time delay, loss rate of data packets and disturbance, are analyzed. A simulation model is established by the TrueTime toolbox with adaptive fuzzy neural network controller for network con-trol system. Compared with the conventional PID controller and PID controller based on fuzzy control, the experimental results show that under the same network environment, adaptive fuzzy neural network controller has the better effect than the conventional PID controller and PID controller based on fuzzy control. Most importantly, the controller designed has better anti-jamming capability and robust performance.