计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2015年
18期
24-31
,共8页
张宇%张延松%陈红%王珊
張宇%張延鬆%陳紅%王珊
장우%장연송%진홍%왕산
数组联机分析处理%数组存储%向量处理%内存联机分析处理
數組聯機分析處理%數組存儲%嚮量處理%內存聯機分析處理
수조련궤분석처리%수조존저%향량처리%내존련궤분석처리
array On-line Analytical Processing(OLAP)%array store%vector processing%in-memory On-line Analytical Processing(OLAP)
多核和众核处理器成为新的具有强大并行处理能力的大内存计算平台的主流配置。多核处理器遵循以LLC(Last Level Cache,最后一级cache)大小为中心的优化技术,而众核处理器,如Phi、GPU协处理器,则采用较小的cache并以更多的硬件级线程来掩盖内存访问延迟的设计。随着处理核心数量的增长,计算框架更倾向于面向大规模处理核心的、代码执行效率高并且扩展性强的设计思想。提出了一种基于数组存储和向量处理的内存分析处理框架Array OLAP,简化OLAP的存储模型和查询处理模型。在Array OLAP计算框架中,维表规范化为基于向量的维过滤器,事实表规范化为带有多维索引的度量属性。通过多维索引计算,一个多维查询被简化为事实表上的向量索引扫描并根据度量表达式进行聚集计算。规范化的向量查找和向量索引扫描具有较好的代码执行效率,并且阶段化的处理模型更好地适应不同的计算平台,将计算阶段分配给最适合的计算平台。同时,Array OLAP是一种面向数据仓库模式特点的设计,向量处理模型设计简单,对于数据仓库维表较小且增长缓慢的特点具有较好的效率。描述了在不同平台上的Array OLAP计算框架并且通过基准测试评估Array OLAP的性能,通过与当前的内存分析型数据库的性能对比,Array OLAP性能超过主流的内存分析型数据库并且可以平滑地迁移到新的硬件平台。
多覈和衆覈處理器成為新的具有彊大併行處理能力的大內存計算平檯的主流配置。多覈處理器遵循以LLC(Last Level Cache,最後一級cache)大小為中心的優化技術,而衆覈處理器,如Phi、GPU協處理器,則採用較小的cache併以更多的硬件級線程來掩蓋內存訪問延遲的設計。隨著處理覈心數量的增長,計算框架更傾嚮于麵嚮大規模處理覈心的、代碼執行效率高併且擴展性彊的設計思想。提齣瞭一種基于數組存儲和嚮量處理的內存分析處理框架Array OLAP,簡化OLAP的存儲模型和查詢處理模型。在Array OLAP計算框架中,維錶規範化為基于嚮量的維過濾器,事實錶規範化為帶有多維索引的度量屬性。通過多維索引計算,一箇多維查詢被簡化為事實錶上的嚮量索引掃描併根據度量錶達式進行聚集計算。規範化的嚮量查找和嚮量索引掃描具有較好的代碼執行效率,併且階段化的處理模型更好地適應不同的計算平檯,將計算階段分配給最適閤的計算平檯。同時,Array OLAP是一種麵嚮數據倉庫模式特點的設計,嚮量處理模型設計簡單,對于數據倉庫維錶較小且增長緩慢的特點具有較好的效率。描述瞭在不同平檯上的Array OLAP計算框架併且通過基準測試評估Array OLAP的性能,通過與噹前的內存分析型數據庫的性能對比,Array OLAP性能超過主流的內存分析型數據庫併且可以平滑地遷移到新的硬件平檯。
다핵화음핵처리기성위신적구유강대병행처리능력적대내존계산평태적주류배치。다핵처리기준순이LLC(Last Level Cache,최후일급cache)대소위중심적우화기술,이음핵처리기,여Phi、GPU협처리기,칙채용교소적cache병이경다적경건급선정래엄개내존방문연지적설계。수착처리핵심수량적증장,계산광가경경향우면향대규모처리핵심적、대마집행효솔고병차확전성강적설계사상。제출료일충기우수조존저화향량처리적내존분석처리광가Array OLAP,간화OLAP적존저모형화사순처리모형。재Array OLAP계산광가중,유표규범화위기우향량적유과려기,사실표규범화위대유다유색인적도량속성。통과다유색인계산,일개다유사순피간화위사실표상적향량색인소묘병근거도량표체식진행취집계산。규범화적향량사조화향량색인소묘구유교호적대마집행효솔,병차계단화적처리모형경호지괄응불동적계산평태,장계산계단분배급최괄합적계산평태。동시,Array OLAP시일충면향수거창고모식특점적설계,향량처리모형설계간단,대우수거창고유표교소차증장완만적특점구유교호적효솔。묘술료재불동평태상적Array OLAP계산광가병차통과기준측시평고Array OLAP적성능,통과여당전적내존분석형수거고적성능대비,Array OLAP성능초과주류적내존분석형수거고병차가이평활지천이도신적경건평태。
Multi-core and many-core processors come to be main stream configuration on new computing platform with powerful parallel computing and large in-memory storage. Multi-core processor commonly follows cache centric optimi-zations with LLC size awareness while many-core processors such as Phi and GPU co-processors are designed with less cache size but more hardware threads to overlap main memory access latency. As core amount increases, the computing framework prefers a code efficient and scalable design for massive processing cores. This paper presents an in-memory analytical computing framework Array OLAP with array store and vector processing to simplify storage model and processing model. In Array OLAP, dimensions are normalized as vector based dimension filter. The fact table is normalized as measure attributes with multidimensional index. With multidimensional index computing, a multidimensional query is simplified as vector index scan on fact table and the measure expressions are aggregated. The normalized vector lookup and vector index scan are efficient in code execution, and the staged processing model is adaptive for different computing platforms by assigning processing stages to the most suitable platform. Moreover, Array OLAP is data warehouse schema aware design. The vector processing model is simple but efficient enough for the small and slow incremental dimensions. It illus-trates the Array OLAP framework in various platforms and evaluates the benchmark performance with state-of-the-art in-memory analytical databases. The experimental results show that Array OLAP outperforms other in-memory analytical engines and can be smoothly migrated to new hardware platform.