电子学报
電子學報
전자학보
ACTA ELECTRONICA SINICA
2015年
8期
1506-1512
,共7页
叶有时%刘淑芬%孙强%刘鸿瑾%刘波%杨桦%吴一帆
葉有時%劉淑芬%孫彊%劉鴻瑾%劉波%楊樺%吳一帆
협유시%류숙분%손강%류홍근%류파%양화%오일범
深空%红外小目标跟踪%粒子滤波%非负矩阵分解
深空%紅外小目標跟蹤%粒子濾波%非負矩陣分解
심공%홍외소목표근종%입자려파%비부구진분해
deep space%infrared small target tracking%particle filter%non-negative matrix factorization(NMF)
非负矩阵分解具有较好的特征提取性能,广泛应用于数据融合领域,而粒子滤波则是一种处理非线性和非高斯动态系统状态估计的有效方法。该文结合两种算法的优点,提出了一种基于改进粒子滤波的红外小目标跟踪算法。利用 NMF 融合当前与之前的粒子分布权重,减小经典粒子滤波退化发散带来的精度误差。避免了目标遮挡及暂时消失带来的跟踪错误。仿真实验证明本文算法相对于经典粒子滤波,具有更好的跟踪精度和稳定性。
非負矩陣分解具有較好的特徵提取性能,廣汎應用于數據融閤領域,而粒子濾波則是一種處理非線性和非高斯動態繫統狀態估計的有效方法。該文結閤兩種算法的優點,提齣瞭一種基于改進粒子濾波的紅外小目標跟蹤算法。利用 NMF 融閤噹前與之前的粒子分佈權重,減小經典粒子濾波退化髮散帶來的精度誤差。避免瞭目標遮擋及暫時消失帶來的跟蹤錯誤。倣真實驗證明本文算法相對于經典粒子濾波,具有更好的跟蹤精度和穩定性。
비부구진분해구유교호적특정제취성능,엄범응용우수거융합영역,이입자려파칙시일충처리비선성화비고사동태계통상태고계적유효방법。해문결합량충산법적우점,제출료일충기우개진입자려파적홍외소목표근종산법。이용 NMF 융합당전여지전적입자분포권중,감소경전입자려파퇴화발산대래적정도오차。피면료목표차당급잠시소실대래적근종착오。방진실험증명본문산법상대우경전입자려파,구유경호적근종정도화은정성。
The non-negative matrix factorization (NMF)is widly used in data fusion for the advantage of feature extraction, and the particle filter (PF)is an effective method for the state estimation of non-linear and non-Gaussian dynamic systems.There-fore,an infrared small target tracking algorithm based on improved particle filter is proposed.Current and previous particle distribute weights are fused by NMF in order to reduce the precision error caused by particle divergence in classic PF method.So the tracking error of sheltered and disappeared target can be avoided.Experimental results show that the proposed method has better tracking pre-cision and is more stability for small target tracking than the classic PF method.