安徽大学学报(自然科学版)
安徽大學學報(自然科學版)
안휘대학학보(자연과학판)
JOURNAL OF ANHUI UNIVERSITY(NATURAL SCIENCES EDITION)
2015年
5期
50-56
,共7页
盲源分离%峰度%自然梯度%人工蜂群算法%搜索过程
盲源分離%峰度%自然梯度%人工蜂群算法%搜索過程
맹원분리%봉도%자연제도%인공봉군산법%수색과정
blind source separation%kurtosis%natural gradient%artificial bee colony algorithm%search process
针对传统盲源分离算法收敛速度与分离性能间的矛盾,提出一种基于改进人工蜂群算法的盲源分离算法。该算法利用信号的峰度绝对值作为被优化目标函数,对人工蜂群算法中跟随蜂阶段的搜索过程进行改进,使人工蜂群算法在初始阶段可以快速收敛到最优解所在区域,具有更高的收敛精度。使用改进后的人工蜂群算法对传统盲源分离算法中的初始分离矩阵进行优化,再利用优化的初始分离矩阵进行信号分离。仿真结果表明,改进后的算法能够显著加快收敛速度并保持较好的分离性能值,较好地解决了收敛速度与分离性能间的矛盾。
針對傳統盲源分離算法收斂速度與分離性能間的矛盾,提齣一種基于改進人工蜂群算法的盲源分離算法。該算法利用信號的峰度絕對值作為被優化目標函數,對人工蜂群算法中跟隨蜂階段的搜索過程進行改進,使人工蜂群算法在初始階段可以快速收斂到最優解所在區域,具有更高的收斂精度。使用改進後的人工蜂群算法對傳統盲源分離算法中的初始分離矩陣進行優化,再利用優化的初始分離矩陣進行信號分離。倣真結果錶明,改進後的算法能夠顯著加快收斂速度併保持較好的分離性能值,較好地解決瞭收斂速度與分離性能間的矛盾。
침대전통맹원분리산법수렴속도여분리성능간적모순,제출일충기우개진인공봉군산법적맹원분리산법。해산법이용신호적봉도절대치작위피우화목표함수,대인공봉군산법중근수봉계단적수색과정진행개진,사인공봉군산법재초시계단가이쾌속수렴도최우해소재구역,구유경고적수렴정도。사용개진후적인공봉군산법대전통맹원분리산법중적초시분리구진진행우화,재이용우화적초시분리구진진행신호분리。방진결과표명,개진후적산법능구현저가쾌수렴속도병보지교호적분리성능치,교호지해결료수렴속도여분리성능간적모순。
In view of the contradiction between convergence speed and separation performance of blind source separation algorithm , a new separation algorithm based on an improved artificial bee colony algorithm was proposed . This proposed algorithm used the absolute value of mixing signal kurtosis as the optimization objective function ,the search process of the onlooker stage in the artificial bee colony algorithm had been improved . Then the improved artificial bee colony algorithm could converge quickly at the initial stage and improved the global convergence performance at the last stage ,the mixing signals could be separated after using the improved artificial bee colony algorithm to optimize the initial separation matrix .Simulation results showed that the improved algorithm could significantly speed up the convergence rate and maintain a good convergence performance ,and that it could solve the contradiction betw een convergence speed and separation performance of blind source separation algorithm .