信号处理
信號處理
신호처리
SIGNAL PROCESSING
2015年
8期
891-895
,共5页
循环平稳信号%谱相关信号子空间拟合%联合稀疏表示%联合l2,0逼近%波达方向估计
循環平穩信號%譜相關信號子空間擬閤%聯閤稀疏錶示%聯閤l2,0逼近%波達方嚮估計
순배평은신호%보상관신호자공간의합%연합희소표시%연합l2,0핍근%파체방향고계
cyclostationary signal%spectral correlation signal space fitting%joint-sparse representation%joint l2,0 approxi-mation%direction of arrival estimation
基于联合稀疏表示的思想,本文提出了一种利用二阶循环统计量的循环平稳信号波达方向(DOA)估计算法。首先,对传统的谱相关信号子空间拟合算法进行分析研究;然后,通过在循环域构造过完备的阵列方向矩阵字典,建立了联合稀疏表示模型,从而将循环平稳信号的DOA估计问题转化为联合稀疏矩阵的恢复问题;最后,利用联合l2,0逼近法求出联合稀疏矩阵的优化解,并根据优化矩阵中非零行的位置估计出循环平稳信号的DOA。与传统的SCSSF算法相比,所提算法具有更高的DOA估计精度,同时也适用于信号个数多于阵元个数的场合。理论分析和仿真实验结果都表明了算法的有效性。
基于聯閤稀疏錶示的思想,本文提齣瞭一種利用二階循環統計量的循環平穩信號波達方嚮(DOA)估計算法。首先,對傳統的譜相關信號子空間擬閤算法進行分析研究;然後,通過在循環域構造過完備的陣列方嚮矩陣字典,建立瞭聯閤稀疏錶示模型,從而將循環平穩信號的DOA估計問題轉化為聯閤稀疏矩陣的恢複問題;最後,利用聯閤l2,0逼近法求齣聯閤稀疏矩陣的優化解,併根據優化矩陣中非零行的位置估計齣循環平穩信號的DOA。與傳統的SCSSF算法相比,所提算法具有更高的DOA估計精度,同時也適用于信號箇數多于陣元箇數的場閤。理論分析和倣真實驗結果都錶明瞭算法的有效性。
기우연합희소표시적사상,본문제출료일충이용이계순배통계량적순배평은신호파체방향(DOA)고계산법。수선,대전통적보상관신호자공간의합산법진행분석연구;연후,통과재순배역구조과완비적진렬방향구진자전,건립료연합희소표시모형,종이장순배평은신호적DOA고계문제전화위연합희소구진적회복문제;최후,이용연합l2,0핍근법구출연합희소구진적우화해,병근거우화구진중비령행적위치고계출순배평은신호적DOA。여전통적SCSSF산법상비,소제산법구유경고적DOA고계정도,동시야괄용우신호개수다우진원개수적장합。이론분석화방진실험결과도표명료산법적유효성。
Based on the idea of joint-sparse representation,a direction of arrival (DOA)estimation method of cyclostation-ary signals using the second order cyclic statistic is proposed in this paper.Firstly,the conventional spectral correlation sig-nal subspace fitting algorithm is analyzed and researched.Then,by constructing overdeterminated dictionary of array direc-tion matrix in the cycle domain,the joint-sparse signal representation model is formed and the problem of DOA estimation of cyclostationary signals is thus converted into that of recovery of the joint-sparse matrix.Finally,the optimal solution of the joint-sparse matrix is given by using the joint l0 approximation approach,and the DOA estimates are obtained according to the locations of non-zero rows in the optimal joint-sparse matrix.Compared with the conventional spectral correlation signal subspace fitting algorithm,the proposed method has higher DOA estimation precision,and is also suitable to the scenario that the number of signals is more than that of array elements.Theory analysis and simulation results both validate the effec-tiveness of the proposed method.