信号处理
信號處理
신호처리
SIGNAL PROCESSING
2015年
8期
956-961
,共6页
黎恒%李智%莫玮%张绍荣
黎恆%李智%莫瑋%張紹榮
려항%리지%막위%장소영
经验模态分解%模态混叠%B样条拟合%时频分析%信号分解
經驗模態分解%模態混疊%B樣條擬閤%時頻分析%信號分解
경험모태분해%모태혼첩%B양조의합%시빈분석%신호분해
empirical mode decomposition%mode-mixing%B-spline approximation%time-frequency analyze%signal decom-position
经验模态分解(EMD)作为时频分析的经典算法,已经得到广泛的应用。然而,其分解质量容易受到噪声等干扰的影响,产生模态混叠问题。本文针对经验模态分解中因噪声存在的模态混叠问题,提出一种自适应的预处理方法。首先对输入信号进行B样条最小二乘拟合,消除了噪声的影响后,再进行EMD分解。为提高算法的自适应性,提出了一种基于极值点出现时刻的节点选取方法。对线性信号与非线性信号的仿真实验表明该方法有较高的分解精度;与聚合经验模态分解方法(EEMD)的分析对比结果表明该方法能很好地抑制噪声引起的模态混叠。
經驗模態分解(EMD)作為時頻分析的經典算法,已經得到廣汎的應用。然而,其分解質量容易受到譟聲等榦擾的影響,產生模態混疊問題。本文針對經驗模態分解中因譟聲存在的模態混疊問題,提齣一種自適應的預處理方法。首先對輸入信號進行B樣條最小二乘擬閤,消除瞭譟聲的影響後,再進行EMD分解。為提高算法的自適應性,提齣瞭一種基于極值點齣現時刻的節點選取方法。對線性信號與非線性信號的倣真實驗錶明該方法有較高的分解精度;與聚閤經驗模態分解方法(EEMD)的分析對比結果錶明該方法能很好地抑製譟聲引起的模態混疊。
경험모태분해(EMD)작위시빈분석적경전산법,이경득도엄범적응용。연이,기분해질량용역수도조성등간우적영향,산생모태혼첩문제。본문침대경험모태분해중인조성존재적모태혼첩문제,제출일충자괄응적예처리방법。수선대수입신호진행B양조최소이승의합,소제료조성적영향후,재진행EMD분해。위제고산법적자괄응성,제출료일충기우겁치점출현시각적절점선취방법。대선성신호여비선성신호적방진실험표명해방법유교고적분해정도;여취합경험모태분해방법(EEMD)적분석대비결과표명해방법능흔호지억제조성인기적모태혼첩。
Empirical mode decomposition has become an established tool for time-frequency analysis and has been widely used.However,a major problem is that its performance of EMD may be affected by intermittence or noise,known as the mode-mixing problem.In order to overcome the mode-mixing problem in the empirical mode decomposition (EMD)algo-rithm,an adaptive pre-processing technique is proposed.In this work,B-spline least squares approximation is first studied and employed before the use of EMD to eliminate the noise which may result in mode mixing.After that,a knot placement iteration algorithm using the extrema time location is put forward to enhance the adaptive property of the proposed method. Simulations of linear and non-linear signals show that it is capable of significantly reducing mode-mixing problem caused by noise.Comparisons between the proposed method and EEMD method are carried out,indicating that the proposed method is superior to existing methods in accuracy.