计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2015年
18期
261-265
,共5页
王子佳%范玉刚%吴建德
王子佳%範玉剛%吳建德
왕자가%범옥강%오건덕
S能量谱%奇异值分解(SVD)%基于变量预测模型的模式识别(VPMCD)%故障诊断
S能量譜%奇異值分解(SVD)%基于變量預測模型的模式識彆(VPMCD)%故障診斷
S능량보%기이치분해(SVD)%기우변량예측모형적모식식별(VPMCD)%고장진단
S energy spectrum%Singular Value Decomposition(SVD)%Variable Predictive Model based Class Discrimi-nate(VPMCD)%fault diagnosis
准确提取振动信号的特征,是滚动轴承故障检测的关键问题,为此提出一种基于S能量谱特征提取的故障诊断方法。该方法对振动信号进行S变换,得到时频矩阵,并构建S能量谱,对S能量谱进行奇异值分解(Singular Value Decomposition,SVD)分析,得到能够反映S能量谱特征的奇异值,利用变量预测模型(Variable Predictive Model based Class Discriminate,VPMCD)方法,通过建立特征值之间的内在关系,构建故障识别模型。将所提方法应用于滚动轴承故障检测,实验结果表明,S能量谱特征提取轴承故障诊断方法具有较高的正判率。
準確提取振動信號的特徵,是滾動軸承故障檢測的關鍵問題,為此提齣一種基于S能量譜特徵提取的故障診斷方法。該方法對振動信號進行S變換,得到時頻矩陣,併構建S能量譜,對S能量譜進行奇異值分解(Singular Value Decomposition,SVD)分析,得到能夠反映S能量譜特徵的奇異值,利用變量預測模型(Variable Predictive Model based Class Discriminate,VPMCD)方法,通過建立特徵值之間的內在關繫,構建故障識彆模型。將所提方法應用于滾動軸承故障檢測,實驗結果錶明,S能量譜特徵提取軸承故障診斷方法具有較高的正判率。
준학제취진동신호적특정,시곤동축승고장검측적관건문제,위차제출일충기우S능량보특정제취적고장진단방법。해방법대진동신호진행S변환,득도시빈구진,병구건S능량보,대S능량보진행기이치분해(Singular Value Decomposition,SVD)분석,득도능구반영S능량보특정적기이치,이용변량예측모형(Variable Predictive Model based Class Discriminate,VPMCD)방법,통과건립특정치지간적내재관계,구건고장식별모형。장소제방법응용우곤동축승고장검측,실험결과표명,S능량보특정제취축승고장진단방법구유교고적정판솔。
To accurately extract the features of vibration signal is essential in detecting rolling bearing fault. Therefore, a method named feature extraction based on S energy spectrum is brought up in this paper. By performing S transform on the vibration signals, time-frequency matrix is obtained and S energy spectrum is constructed. S energy spectrum is decom-posed into singular values that can reflect the energy distribution and analyses with the help of Singular Value Decomposi-tion(SVD). Through utilizing the Variable Predictive Model based Class Discriminate(VPMCD)and comparing the interrelation among singular value vectors of S energy spectrum, the fault identification model is constructed. The experi-mental results prove that the proposed method applied to the bearing fault diagnosis acquires a better correction rate.