计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2015年
18期
255-260
,共6页
不可压缩流体%有限体积算法%两重稳定方法%Navier-Stokes方程
不可壓縮流體%有限體積算法%兩重穩定方法%Navier-Stokes方程
불가압축류체%유한체적산법%량중은정방법%Navier-Stokes방정
incompressible flow%finite volume methods%two-level stabilized methods%Navier-Stokes equations
通过将局部高斯积分稳定化方法和两重网格算法思想紧密结合,提出了粘性不可压缩流体的两重稳定有限体积算法。将该算法的三种迭代格式进行了效率的分析比较。理论分析和数值实验发现:当粗、细网格尺度比例选择适当时,两重算法与传统算法具有相同精度解的同时,效率大大提高;对不同格式的两重有限体积算法进行比较分析发现:Simple格式计算效率最高,Picard格式次之,Newton格式较低。
通過將跼部高斯積分穩定化方法和兩重網格算法思想緊密結閤,提齣瞭粘性不可壓縮流體的兩重穩定有限體積算法。將該算法的三種迭代格式進行瞭效率的分析比較。理論分析和數值實驗髮現:噹粗、細網格呎度比例選擇適噹時,兩重算法與傳統算法具有相同精度解的同時,效率大大提高;對不同格式的兩重有限體積算法進行比較分析髮現:Simple格式計算效率最高,Picard格式次之,Newton格式較低。
통과장국부고사적분은정화방법화량중망격산법사상긴밀결합,제출료점성불가압축류체적량중은정유한체적산법。장해산법적삼충질대격식진행료효솔적분석비교。이론분석화수치실험발현:당조、세망격척도비례선택괄당시,량중산법여전통산법구유상동정도해적동시,효솔대대제고;대불동격식적량중유한체적산법진행비교분석발현:Simple격식계산효솔최고,Picard격식차지,Newton격식교저。
In this paper, two-level stabilized finite volume methods are considered which are based on local Gauss inte-gral technique and two-level grid algorithm for the incompressible flow. The error analysis shows that the two-level stabi-lized finite volume methods provide an approximate solution with the convergence rate of the same order as the usual sta-bilized finite volume solution solving the incompressible flow problems on a fine grid for a related choice of mesh widths. The performance of three kinds iterative scheme of two-level stabilized methods are compared in efficiency and precision aspects by a series of numerical experiments. It discovers that the simple scheme is better than two others on accuracy and efficiency. There is the poor numerical accuracy for the Newton scheme, but the Picard scheme is more suitable to incom-pressible flow with low viscosity coefficient.