心理学报
心理學報
심이학보
Acta Psychologica Sinica
2005年
5期
674~680
,共null页
丁树良 熊建华 罗芬 吴锐 甘小方 涂白
丁樹良 熊建華 囉芬 吳銳 甘小方 塗白
정수량 웅건화 라분 오예 감소방 도백
项目反应理论 等值方法,等值系数
項目反應理論 等值方法,等值繫數
항목반응이론 등치방법,등치계수
item response theory, test equating criterion, equating coefficient.
受假设检验方法的启发,该文引出了一种基于项目反应理论的新等值方法--平方根等值准则.它具有一些特点:定义式中答对、答错概率同时出现而不能互相替代;极易从0-1评分模式的版本转换到多级评分版本;它可以看成是Haebara等值准则的加权形式.以等值系数估计值的误差大小为衡量标准,以Wilcoxon符号秩检验为依据,大量的Monte Carlo模拟结果显示了一种有趣的现象,即等值方法的运用范围既与项目参数估计精度有关,又与等值系数A的范围有关,但与另一个等值系数B的范围无关.当项目参数估计精度较高或中等而A取值在0.9~1.3之间,新方法往往比Stocking_Lord方法和Haebara方法的估计误差小且有显著性差异,当项目参数估计精度较低时,而A从1.0~2.0时新方法都有优越性.
受假設檢驗方法的啟髮,該文引齣瞭一種基于項目反應理論的新等值方法--平方根等值準則.它具有一些特點:定義式中答對、答錯概率同時齣現而不能互相替代;極易從0-1評分模式的版本轉換到多級評分版本;它可以看成是Haebara等值準則的加權形式.以等值繫數估計值的誤差大小為衡量標準,以Wilcoxon符號秩檢驗為依據,大量的Monte Carlo模擬結果顯示瞭一種有趣的現象,即等值方法的運用範圍既與項目參數估計精度有關,又與等值繫數A的範圍有關,但與另一箇等值繫數B的範圍無關.噹項目參數估計精度較高或中等而A取值在0.9~1.3之間,新方法往往比Stocking_Lord方法和Haebara方法的估計誤差小且有顯著性差異,噹項目參數估計精度較低時,而A從1.0~2.0時新方法都有優越性.
수가설검험방법적계발,해문인출료일충기우항목반응이론적신등치방법--평방근등치준칙.타구유일사특점:정의식중답대、답착개솔동시출현이불능호상체대;겁역종0-1평분모식적판본전환도다급평분판본;타가이간성시Haebara등치준칙적가권형식.이등치계수고계치적오차대소위형량표준,이Wilcoxon부호질검험위의거,대량적Monte Carlo모의결과현시료일충유취적현상,즉등치방법적운용범위기여항목삼수고계정도유관,우여등치계수A적범위유관,단여령일개등치계수B적범위무관.당항목삼수고계정도교고혹중등이A취치재0.9~1.3지간,신방법왕왕비Stocking_Lord방법화Haebara방법적고계오차소차유현저성차이,당항목삼수고계정도교저시,이A종1.0~2.0시신방법도유우월성.
Motivated by Freeman-Tukey statistical test, a new equating criterion under item response theory, known as square root criterion (SQRcrit), is proposed. The new method has some features, such as the probabilities for correct response and error response appear simultaneously in the formula and they could not be replaced each other. It is easy to generalize from dichotomous version to polytomous version. It could be regarded as one of weighted versions of Haebara equating criterion. In terms of the recovery of estimating the equating coefficients and based on Wilcoxon sign-rank test, the findings of Monte Carlo study show an interesting phenomenon that if the equating approaches are proper relates to the accuracy of the estimation of the item parameters (AEIP) and to the domain of the equating coefficient A, but not to the domain of B. When the AEIP is higher, the new equating criterion is proper for 0.9≤A≤1.3. And when the AEIP is lower, the new equating criterion is proper for 1≤A≤2.