衡水学院学报
衡水學院學報
형수학원학보
Journal of Hengshui University
2006年
1期
8~9
,共null页
函数级数 一致收敛 一致有界 和函数
函數級數 一緻收斂 一緻有界 和函數
함수급수 일치수렴 일치유계 화함수
function series; consistent convergence; uniformly bound; sum function
对于函数级数,研究其和函数的解析性质很重要,但函数级数必须具有一致收敛性,而判断函数级数的一致收敛性往往是比较困难的.对∑n=1^∞(-1)^(n+1)un(x)型函数级数,只要函数un(x)(n=1,2,3…)在区间[a,b]上连续,且函数列在区间[a.b]上单调减少并收敛于0,则∑n=1^∞(-1)^(n+1)un(x)型函数级数就一致收敛。
對于函數級數,研究其和函數的解析性質很重要,但函數級數必鬚具有一緻收斂性,而判斷函數級數的一緻收斂性往往是比較睏難的.對∑n=1^∞(-1)^(n+1)un(x)型函數級數,隻要函數un(x)(n=1,2,3…)在區間[a,b]上連續,且函數列在區間[a.b]上單調減少併收斂于0,則∑n=1^∞(-1)^(n+1)un(x)型函數級數就一緻收斂。
대우함수급수,연구기화함수적해석성질흔중요,단함수급수필수구유일치수렴성,이판단함수급수적일치수렴성왕왕시비교곤난적.대∑n=1^∞(-1)^(n+1)un(x)형함수급수,지요함수un(x)(n=1,2,3…)재구간[a,b]상련속,차함수렬재구간[a.b]상단조감소병수렴우0,칙∑n=1^∞(-1)^(n+1)un(x)형함수급수취일치수렴。
It is of great importance to study the analytic quality of sum function in function series. However, this study should be bssed on the fact that the series must have consistent convergence, the judgment of which is rather difficult. So far as the type of series ∑n=1^∞(-1)^(n+1)un(x) is concerned, only if the function u. (x) ( n =1,2,3 ,…) continues at the interval [ a,b], and the function chain un (x)reduces and converges to 0, the type of series will achieve consistent convergence.