南方经济
南方經濟
남방경제
South China journal of Economy
2006年
3期
108~112
,共null页
中国股票市场 双长记忆 ARFIMA-FIGARCH模型
中國股票市場 雙長記憶 ARFIMA-FIGARCH模型
중국고표시장 쌍장기억 ARFIMA-FIGARCH모형
China Stock Market; Double Long-Memory; ARFIMA-FIGARCH Model
与现有研究方法不同,本文通过考察Akaike、Schwarz、Shibata、Hannan-Quinn四个信息准则,建立了描述深圳股票市场收益过程和波动过程双长记忆性特征的ARFIMA-FIGARCH模型。实证分析说明采用ARFIMA(0,m,1)-FIGARCH(1,d,0)模型拟合最好。研究结果表明:深圳成分指数日收益序列无长记忆,但波动序列具有较强的长记忆特征。
與現有研究方法不同,本文通過攷察Akaike、Schwarz、Shibata、Hannan-Quinn四箇信息準則,建立瞭描述深圳股票市場收益過程和波動過程雙長記憶性特徵的ARFIMA-FIGARCH模型。實證分析說明採用ARFIMA(0,m,1)-FIGARCH(1,d,0)模型擬閤最好。研究結果錶明:深圳成分指數日收益序列無長記憶,但波動序列具有較彊的長記憶特徵。
여현유연구방법불동,본문통과고찰Akaike、Schwarz、Shibata、Hannan-Quinn사개신식준칙,건립료묘술심수고표시장수익과정화파동과정쌍장기억성특정적ARFIMA-FIGARCH모형。실증분석설명채용ARFIMA(0,m,1)-FIGARCH(1,d,0)모형의합최호。연구결과표명:심수성분지수일수익서렬무장기억,단파동서렬구유교강적장기억특정。
This paper can simultaneously capture double long memory properties of return process and volatility process of China stock market by ARFIMA-FIGARCH model The results of empirical study to the behavior of Shenzhen stock market show that there is no long memory for Shenzhen daily return, while there is strong long memory for volatility series of Shenzhen daily return. According to Akaike,Schwarz,Shibata and Hannan-Quinn criterions, ARFIMA(0,m,1)- FIGARCH(1,d,0) model is the most appropriate for simulating $henzhen daily return.