系统工程理论与实践
繫統工程理論與實踐
계통공정이론여실천
Systems Engineering—Theory & Practice
2008年
12期
19~29
,共null页
凸-凹生产函数 完全竞争市场 投资 最优控制 稳定状态
凸-凹生產函數 完全競爭市場 投資 最優控製 穩定狀態
철-요생산함수 완전경쟁시장 투자 최우공제 은정상태
convex-concave function; competitive market; investment; optimal control; steady state
假定在完全竞争市场中,厂商的生产函数具有先凸后凹的性质,即:边际资本产出在前一阶段里递增,而在后一阶段里递减;厂商的成本是投资的凸函数, 厂商的目标是选择最优的投资策略,以使得动态约束下的总利润达到最大, 首先构造了在经济学上具有一定代表性并且在数学上易于处理的凸凹生产函数;然后证明了厂商在前后两个阶段均衡状态的存在性、唯一性、稳定性,并据此利用相平面勾勒出了满足最优性必要条件的轨线;最后对处于前后不同阶段中两个鞍点解的最优性进行了分析, 同时,将动态结果与已有的静态结果进行了比较.
假定在完全競爭市場中,廠商的生產函數具有先凸後凹的性質,即:邊際資本產齣在前一階段裏遞增,而在後一階段裏遞減;廠商的成本是投資的凸函數, 廠商的目標是選擇最優的投資策略,以使得動態約束下的總利潤達到最大, 首先構造瞭在經濟學上具有一定代錶性併且在數學上易于處理的凸凹生產函數;然後證明瞭廠商在前後兩箇階段均衡狀態的存在性、唯一性、穩定性,併據此利用相平麵勾勒齣瞭滿足最優性必要條件的軌線;最後對處于前後不同階段中兩箇鞍點解的最優性進行瞭分析, 同時,將動態結果與已有的靜態結果進行瞭比較.
가정재완전경쟁시장중,엄상적생산함수구유선철후요적성질,즉:변제자본산출재전일계단리체증,이재후일계단리체감;엄상적성본시투자적철함수, 엄상적목표시선택최우적투자책략,이사득동태약속하적총리윤체도최대, 수선구조료재경제학상구유일정대표성병차재수학상역우처리적철요생산함수;연후증명료엄상재전후량개계단균형상태적존재성、유일성、은정성,병거차이용상평면구륵출료만족최우성필요조건적궤선;최후대처우전후불동계단중량개안점해적최우성진행료분석, 동시,장동태결과여이유적정태결과진행료비교.
Consider a finn in a competitive market. The production function is of a convex-concave shape, i.e., the marginal output of capital is increasing at an early stage and decreasing at a later stage. The cost function is a convex function of investment. The firm's objective is to select an optimal investment path so as to maximize the total profit subjected to a dynamic constraint. We first construct a convex-concave production fimction which is reasonable in economics and tractable in mathematics; Second, based on this kind of production function, we prove existence, uniqueness, and stability for the steady states of the two different stages and accordingly, the trajectories meeting the necessary optimal condition are depicted through a phase plane; Finally, the optimality is briefly analyzed for the two saddle solutions corresponding to the two different stages, and a brief comparison is made between our dynamic result and the existing static one.