心理学报
心理學報
심이학보
Acta Psychologica Sinica
2009年
2期
175~181
,共null页
丁树良 祝玉芳 林海菁 蔡艳
丁樹良 祝玉芳 林海菁 蔡豔
정수량 축옥방 림해정 채염
规则空间模型 属性层次模型 Q矩阵理论 理想反应模式 扩张算法
規則空間模型 屬性層次模型 Q矩陣理論 理想反應模式 擴張算法
규칙공간모형 속성층차모형 Q구진이론 이상반응모식 확장산법
rule space model; attribute hierarchy model; Q matrix theory; ideal response pattern; augment algorithm
K.K.Tatsuoka和她同事开发的规则空间模型(RSM)是一种在国内外有较大影响的认知诊断模型,但是Tatsuoka的RSM中Q矩阵理论存在缺陷和错误,这些失误使得RSM中用布尔描述函数(BDF)计算被试理想项目反应模式(IRP)的方法缺乏理论依据。这里揭示了Tatsuoka的Q矩阵理论的缺陷和错误并引进既不使用BDF又便于应用的计算IRP的方法;接着还介绍一种由可达阵计算简化Q阵的方法,该方法显示了可达阵在构造认知诊断测验的重要性。这些结果对丰富Q矩阵理论及正确使用RSM进行认知诊断有一定的意义。
K.K.Tatsuoka和她同事開髮的規則空間模型(RSM)是一種在國內外有較大影響的認知診斷模型,但是Tatsuoka的RSM中Q矩陣理論存在缺陷和錯誤,這些失誤使得RSM中用佈爾描述函數(BDF)計算被試理想項目反應模式(IRP)的方法缺乏理論依據。這裏揭示瞭Tatsuoka的Q矩陣理論的缺陷和錯誤併引進既不使用BDF又便于應用的計算IRP的方法;接著還介紹一種由可達陣計算簡化Q陣的方法,該方法顯示瞭可達陣在構造認知診斷測驗的重要性。這些結果對豐富Q矩陣理論及正確使用RSM進行認知診斷有一定的意義。
K.K.Tatsuoka화저동사개발적규칙공간모형(RSM)시일충재국내외유교대영향적인지진단모형,단시Tatsuoka적RSM중Q구진이론존재결함화착오,저사실오사득RSM중용포이묘술함수(BDF)계산피시이상항목반응모식(IRP)적방법결핍이론의거。저리게시료Tatsuoka적Q구진이론적결함화착오병인진기불사용BDF우편우응용적계산IRP적방법;접착환개소일충유가체진계산간화Q진적방법,해방법현시료가체진재구조인지진단측험적중요성。저사결과대봉부Q구진이론급정학사용RSM진행인지진단유일정적의의。
In Tatsuokag Rule Space Model (RSM) and in Attribute Hierarchy Method (AHM) (Leighton et al. , 2004), attributes and hierarchy serve as the most important input variables to the model because they provide the basis for interpreting the results in this approach to psychometric modeling ( Gierl, et al. , 2000 ). The hierarchical relation among the attributes is represented by adjacency matrix. From the adjacency matrix, the reachability matrix could be derived, which may then play an important role for deriving the reduced Q matrix (Gierl, et al. , 2000). The reduced Q matrix is used to derive the examinee's knowledge state vector, which is a core concept in the Rule Space Model. In this paper, some flaws of Tatsuoka's Q matrix theory ( 1991, 1995 ) are discussed, and some remedies are proposed, especially through a series of new algorithms. These algorithms are useful in the Rule Space Model and in the Attribute Hierarchy Model to construct a Q matrix when the reachability matrix is given, and are useful to calculate the ideal/expected response patterns without using the Boolean Descriptive Function. These algorithms demonstrate two facts: firstly, the reachability matrix is the most important tool in constructing a cognitive test, and could help increase the diagnosis accuracy; secondly, use of these algorithms can remedy the flaws in the Tatsuoka's Q matrix theory. Furthermore, the new algorithms have other advantages, such as that they reduce computational burden for some complicated tasks requiting heavy numerical operations. Hence, the proposed methods in the paper may enrich the applications of the Q matrix theory.