周口师范学院学报
週口師範學院學報
주구사범학원학보
Journal of Zhoukou Normal University
2010年
2期
16~19
,共null页
SEIRS模型 免疫接种 稳定性 后向分支
SEIRS模型 免疫接種 穩定性 後嚮分支
SEIRS모형 면역접충 은정성 후향분지
SEIRS model; vaccination; stability; backward bifurcation
提出一类具有连续接种免疫的SEIRS流行病模型.讨论了其无病平衡点的稳定性,并利用Lssalle不变集原理讨论了无病平衡点的全局稳定性.利用分析方法讨论了其正平衡点的存在性及后向分支的存在性.
提齣一類具有連續接種免疫的SEIRS流行病模型.討論瞭其無病平衡點的穩定性,併利用Lssalle不變集原理討論瞭無病平衡點的全跼穩定性.利用分析方法討論瞭其正平衡點的存在性及後嚮分支的存在性.
제출일류구유련속접충면역적SEIRS류행병모형.토론료기무병평형점적은정성,병이용Lssalle불변집원리토론료무병평형점적전국은정성.이용분석방법토론료기정평형점적존재성급후향분지적존재성.
In this paper, an SEIRS model with continuous vaccination was proposed. The stability of the disease-free equilibrium was discussed, and the global stability of the disease-free equilibrium was discussed with the Lasalle's invariance principle. Using analytical methods, the existence of the positive equilibrium was obtained. A bifurcation analysis was performed and conditions under which the system exhibits backward bifurcation were provided.