体育科学
體育科學
체육과학
China Sport Science
2010年
10期
30~35
,共null页
钟运健 刘宇 裘艺 魏书涛 李庆
鐘運健 劉宇 裘藝 魏書濤 李慶
종운건 류우 구예 위서도 리경
快速跑 冗余肌肉应力 静态优化 肌肉功能 双关节肌
快速跑 冗餘肌肉應力 靜態優化 肌肉功能 雙關節肌
쾌속포 용여기육응력 정태우화 기육공능 쌍관절기
sprint running ; redundant muscle stress ; static optimization ; muscle function ; two-joint muscle
目的:量化快速跑过程中下肢各关节力矩和各单块肌肉(群)肌应力的变化规律及其对快速跑动作所起的作用。方法:同步采集8名优秀短跑运动员途中跑时完整步态下肢运动学数据(300Hz)、地面反作用力(1200Hz)数据和肌电图(120Hz)信号,建立下肢肌肉一骨骼系统模型,应用中尺度序列二次规划拟牛顿线性搜索算法将快速跑时关节肌力矩优化并求解单块肌肉应力。结果:最优化算法所估算的快速跑时下肢冗余肌力变化与快速跑时肌电全波整流图存在一定程度上的相似。支撑期,臀大肌、胭绳肌、比目鱼肌和腓肠肌应力水平较高。摆动前期,髂肌、股四头肌群(股直肌)、股二头肌短头和腓肠肌为主要做功肌肉。摆动后期,只有臀大肌和胭绳肌活动积极。双关节肌胭绳肌、股直肌和腓肠肌在各时期的应力值均高于其他做功肌肉,且在整个步态中的应力峰值也显著高于其他肌肉。结论:下肢双关节肌胭绳肌、股直肌和腓肠肌受两个关节复杂的交互作用导致应力值偏高,在快速跑时被拉伤风险较大。此优化算法为了解快速跑时下肢单块肌肉力量变化提供了更为精确的方法,进而为分析快速跑肌肉功能和为专项力量训练的科学化及防止肌肉拉伤提供了生物力学依据。
目的:量化快速跑過程中下肢各關節力矩和各單塊肌肉(群)肌應力的變化規律及其對快速跑動作所起的作用。方法:同步採集8名優秀短跑運動員途中跑時完整步態下肢運動學數據(300Hz)、地麵反作用力(1200Hz)數據和肌電圖(120Hz)信號,建立下肢肌肉一骨骼繫統模型,應用中呎度序列二次規劃擬牛頓線性搜索算法將快速跑時關節肌力矩優化併求解單塊肌肉應力。結果:最優化算法所估算的快速跑時下肢冗餘肌力變化與快速跑時肌電全波整流圖存在一定程度上的相似。支撐期,臀大肌、胭繩肌、比目魚肌和腓腸肌應力水平較高。襬動前期,髂肌、股四頭肌群(股直肌)、股二頭肌短頭和腓腸肌為主要做功肌肉。襬動後期,隻有臀大肌和胭繩肌活動積極。雙關節肌胭繩肌、股直肌和腓腸肌在各時期的應力值均高于其他做功肌肉,且在整箇步態中的應力峰值也顯著高于其他肌肉。結論:下肢雙關節肌胭繩肌、股直肌和腓腸肌受兩箇關節複雜的交互作用導緻應力值偏高,在快速跑時被拉傷風險較大。此優化算法為瞭解快速跑時下肢單塊肌肉力量變化提供瞭更為精確的方法,進而為分析快速跑肌肉功能和為專項力量訓練的科學化及防止肌肉拉傷提供瞭生物力學依據。
목적:양화쾌속포과정중하지각관절력구화각단괴기육(군)기응력적변화규률급기대쾌속포동작소기적작용。방법:동보채집8명우수단포운동원도중포시완정보태하지운동학수거(300Hz)、지면반작용력(1200Hz)수거화기전도(120Hz)신호,건립하지기육일골격계통모형,응용중척도서렬이차규화의우돈선성수색산법장쾌속포시관절기력구우화병구해단괴기육응력。결과:최우화산법소고산적쾌속포시하지용여기력변화여쾌속포시기전전파정류도존재일정정도상적상사。지탱기,둔대기、연승기、비목어기화비장기응력수평교고。파동전기,가기、고사두기군(고직기)、고이두기단두화비장기위주요주공기육。파동후기,지유둔대기화연승기활동적겁。쌍관절기연승기、고직기화비장기재각시기적응력치균고우기타주공기육,차재정개보태중적응력봉치야현저고우기타기육。결론:하지쌍관절기연승기、고직기화비장기수량개관절복잡적교호작용도치응력치편고,재쾌속포시피랍상풍험교대。차우화산법위료해쾌속포시하지단괴기육역량변화제공료경위정학적방법,진이위분석쾌속포기육공능화위전항역량훈련적과학화급방지기육랍상제공료생물역학의거。
Objective: Quantify the variations in lower-limb joints torque and monoliphic muscles stress in sprint running and its influence on sprint running. Methods : Eight excellent sprinters ' two-dimensional kinetic data (300 Hz), the data of the ground's counterforce (1 200 Hz) and the electromyography signal (120 Hz) are collected in integral gait in their maximum velocity sprint running in order to build a lower-limb musculoskeletal model. In addition, mesoscale sequential quadratic programming pseudo-newton for linear search algorithm is used to optimize the muscle torque in sprint running, thereby working out monoliphic muscles stress. Results:In sprint running, the variation of lower-limb redundant muscle strength is similar to the full-wave rectification of EMG. And during the support phase, a higher level of stress e- merges in such muscles as GM, HAM (except for BFsh), SOL and GAS. During the earlier stage of swing phase, it is mainly such muscles as IL, VAS (except for RF), RF, BFsh and GAS that do work. During the later period of swing phase, only HAM and GM are active. It also shows that during every phase the stress value of such two-joint muscles as HAM, RF and GAS is higher than that of the other muscles that do work, and in the integral gait their peak value of stress is higher than that of the other muscles. Conclusion:The complex interac- tion between two joints results in a high stress value of such lower-limb two-joint muscles as HAM, RF and GAS, which leads to a high risk of pulling a muscle in sprint running. The arithmetic of optimization provides a biomechanical basis for a further study on muscle functions in sprint running from the perspective of monoliphic muscle, scientific specific strength training and prevention of pulling a muscle.