泉州师范学院学报
泉州師範學院學報
천주사범학원학보
Journal of Quanzhou Normal College
2011年
2期
43~45
,共null页
Picard算子 局部有界函数 收敛阶 Lebesgue-Stieltjes积分 矩
Picard算子 跼部有界函數 收斂階 Lebesgue-Stieltjes積分 矩
Picard산자 국부유계함수 수렴계 Lebesgue-Stieltjes적분 구
Picard operators; locally bounded functions; rate of convergence; Lebesgue-Stieltjes integral; moments.
研究Picard算子的逼近性质,利用Bojanic-Cheng-Khan的方法及Hldre不等式,运用分析技术和不等式技巧,得到了Picard算子对一类局部有界函数的渐近估计,并得出该算子的一个渐近展开公式.
研究Picard算子的逼近性質,利用Bojanic-Cheng-Khan的方法及Hldre不等式,運用分析技術和不等式技巧,得到瞭Picard算子對一類跼部有界函數的漸近估計,併得齣該算子的一箇漸近展開公式.
연구Picard산자적핍근성질,이용Bojanic-Cheng-Khan적방법급Hldre불등식,운용분석기술화불등식기교,득도료Picard산자대일류국부유계함수적점근고계,병득출해산자적일개점근전개공식.
The approximation properties of Picard operators are studied for locally bounded functions.Bojanic-Khan-Cheng's method and inequality combined with analysis techniques and inequality skills are used to derive an asymptotically optimal estimate on the rate of convergence of Picard operators for locally bounded functions.