洛阳师范学院学报
洛暘師範學院學報
락양사범학원학보
Journal of Luoyang Teachers College
2011年
5期
74~77
,共null页
多变量决策树 粗糙集 相对泛化 确定性程度
多變量決策樹 粗糙集 相對汎化 確定性程度
다변량결책수 조조집 상대범화 학정성정도
multivariate decision tree; rough set; generalization; measure of certainty
应用粗糙集理论,提出了一种新的多变量决策树构造算法.该算法以核相对于决策类的泛化来划分样本集,如果所划分子集的样本存在不一致决策类并且未用于划分的属性为空时,试探着分别把该子集和一致性子集合并,计算各合并子集的条件类对决策类的确定性程度,选择确定性程度大的作为同一子集,并用一致性子集的类标号进行标示.和苗夺谦提出的多变量决策树算法比较,本算法充分考虑了训练集中的噪声数据,允许在构造决策树的过程中划入正域的实例类别存在一定的不一致性,可简化生成的决策树,提高决策树的泛化能力.
應用粗糙集理論,提齣瞭一種新的多變量決策樹構造算法.該算法以覈相對于決策類的汎化來劃分樣本集,如果所劃分子集的樣本存在不一緻決策類併且未用于劃分的屬性為空時,試探著分彆把該子集和一緻性子集閤併,計算各閤併子集的條件類對決策類的確定性程度,選擇確定性程度大的作為同一子集,併用一緻性子集的類標號進行標示.和苗奪謙提齣的多變量決策樹算法比較,本算法充分攷慮瞭訓練集中的譟聲數據,允許在構造決策樹的過程中劃入正域的實例類彆存在一定的不一緻性,可簡化生成的決策樹,提高決策樹的汎化能力.
응용조조집이론,제출료일충신적다변량결책수구조산법.해산법이핵상대우결책류적범화래화분양본집,여과소화분자집적양본존재불일치결책류병차미용우화분적속성위공시,시탐착분별파해자집화일치성자집합병,계산각합병자집적조건류대결책류적학정성정도,선택학정성정도대적작위동일자집,병용일치성자집적류표호진행표시.화묘탈겸제출적다변량결책수산법비교,본산법충분고필료훈련집중적조성수거,윤허재구조결책수적과정중화입정역적실례유별존재일정적불일치성,가간화생성적결책수,제고결책수적범화능력.
In this paper, a new method to build multivariate decision trees based on Rough Set is proposed. The relative generalization of core with respect to decision attributes is used for devising to the decision table, if a certain inconsistency exists in the subset of examples and there are not attributes, then the inconsistency subset merged with the consistency subsets, respectively. And the measures of certainty of condition equivalence relation with respect to decision equivalence relation are accounted respectively, the great result of the combined subset is got, and the label of the consistency subset to label the node. Compared with the algorithm of Literature E51, noisy data of training sets are considered. A certain inconsistency is allowed to exist in examples of the positive regions, so the method can simplify the decision trees and improve its extensive ability.