外国文学研究
外國文學研究
외국문학연구
Foreign Literature Studies
2011年
4期
20~28
,共null页
帕洛夫 《极端的诗歌艺术》 数学方法 建构主义
帕洛伕 《極耑的詩歌藝術》 數學方法 建構主義
파락부 《겁단적시가예술》 수학방법 건구주의
Marjorie Perloff Radical Artifice mathematic method constructivism
帕洛夫《极端的诗歌艺术》揭示当代诗歌创作特点,从结构方法的角度构建多媒体时代的诗学。现锁定该书的第五章"(数)之崛起",以帕洛夫另一本文集《诗的破格》中第四章"数的求索"为主要参考,试图厘清数学方法的理念。论述分四个部分:第一部分梳理数学方法的演变,追踪数字之于诗歌创作的客观意义、形式意义、象征意义、结构意义,论述以数学方法创作对诗篇语言、结构的影响,讨论数学方法与传统创作方法的联系与不同,指出数学方法结构诗篇的规约性、修辞性、游戏性。第二部分在自由诗发展变异的背景中理解数学方法产生,标出数学方法的理论基础。第三部分比较数学方法与中国传统诗文机巧的相通之处,认为数学方法在单音节且不受语法变位影响的汉语言中有更理想的生存空间。第四部分就数学方法的前景和普及性提出一些疑问。
帕洛伕《極耑的詩歌藝術》揭示噹代詩歌創作特點,從結構方法的角度構建多媒體時代的詩學。現鎖定該書的第五章"(數)之崛起",以帕洛伕另一本文集《詩的破格》中第四章"數的求索"為主要參攷,試圖釐清數學方法的理唸。論述分四箇部分:第一部分梳理數學方法的縯變,追蹤數字之于詩歌創作的客觀意義、形式意義、象徵意義、結構意義,論述以數學方法創作對詩篇語言、結構的影響,討論數學方法與傳統創作方法的聯繫與不同,指齣數學方法結構詩篇的規約性、脩辭性、遊戲性。第二部分在自由詩髮展變異的揹景中理解數學方法產生,標齣數學方法的理論基礎。第三部分比較數學方法與中國傳統詩文機巧的相通之處,認為數學方法在單音節且不受語法變位影響的漢語言中有更理想的生存空間。第四部分就數學方法的前景和普及性提齣一些疑問。
파락부《겁단적시가예술》게시당대시가창작특점,종결구방법적각도구건다매체시대적시학。현쇄정해서적제오장"(수)지굴기",이파락부령일본문집《시적파격》중제사장"수적구색"위주요삼고,시도전청수학방법적이념。논술분사개부분:제일부분소리수학방법적연변,추종수자지우시가창작적객관의의、형식의의、상정의의、결구의의,논술이수학방법창작대시편어언、결구적영향,토론수학방법여전통창작방법적련계여불동,지출수학방법결구시편적규약성、수사성、유희성。제이부분재자유시발전변이적배경중리해수학방법산생,표출수학방법적이론기출。제삼부분비교수학방법여중국전통시문궤교적상통지처,인위수학방법재단음절차불수어법변위영향적한어언중유경이상적생존공간。제사부분취수학방법적전경화보급성제출일사의문。
Radical Artifice explicates contemporary poetry writing and promotes new poetics in an age of media. Focusing on "The Return of the (Numerical) Repressed" and in reference to "The Pursuit of Numbers: Yeats, Khlebnikov, and Mathematics of Modernism" of Poetic License by the same author, I set out to foreground Perloff’s mathematic theory in literary writing. Observation and comments come in four parts. Part I highlights numerical values (objective, formal, symbolic and structural) in literary writings and map the development of mathematic method as discussed by Perloff. My observation is that mathematic method sometimes affects poems’ language, structure and outlook, and sometimes not. Another finding is that mathematic method is connected to traditional poetics and has its own characteristic in constraints, rhetoric, and procedural play. Part II attempts to understand the mathematic method in the context of free verse development and deterioration. This part also marks the theoretical grounding of the mathematic poetics. Part III is a comparison between mathematic method and similar artifice in traditional Chinese literary writing. I argue that mathematic method is better reflected in and more applicable to Chinese writing, because Chinese is monosyllabic and involves no grammatical inflexion. Part IV concerns the prospect and popularity of mathematic method in literary writing.