衡阳师范学院学报
衡暘師範學院學報
형양사범학원학보
journal of Hengyang Normal University
2011年
6期
122~126
,共null页
李吟 田亚平 李朝奎 周新邵
李吟 田亞平 李朝奎 週新邵
리음 전아평 리조규 주신소
汽车保有量 主成分分析 BP神经网络 预测
汽車保有量 主成分分析 BP神經網絡 預測
기차보유량 주성분분석 BP신경망락 예측
vehicle possession; principal component analysis; the BP neural network; prediction
汽车保有量预测对城市交通的发展方向、城市交通的控制管理、城市道路的建设情况等都有直接的参考意义。本文通过分析影响城市汽车保有量的因素,通过参考部分参考文献,城区人口总数人均GDP、公路客运量等8个指标,首先采用主成分分析法将8个因素进行分析,然后建立BP神经网络模型对湖南省2006到2008年汽车保有量进行预测,预测结果分别为98.93万辆、122.18万辆、137.03万辆,与汽车保有量实际值94.64万辆、121.72万辆、142.67万辆很接近,预测精度比较高。这表明BP神经网络具有很强的学习与泛化能力,用于汽车保有量预测的可行性与有效性。
汽車保有量預測對城市交通的髮展方嚮、城市交通的控製管理、城市道路的建設情況等都有直接的參攷意義。本文通過分析影響城市汽車保有量的因素,通過參攷部分參攷文獻,城區人口總數人均GDP、公路客運量等8箇指標,首先採用主成分分析法將8箇因素進行分析,然後建立BP神經網絡模型對湖南省2006到2008年汽車保有量進行預測,預測結果分彆為98.93萬輛、122.18萬輛、137.03萬輛,與汽車保有量實際值94.64萬輛、121.72萬輛、142.67萬輛很接近,預測精度比較高。這錶明BP神經網絡具有很彊的學習與汎化能力,用于汽車保有量預測的可行性與有效性。
기차보유량예측대성시교통적발전방향、성시교통적공제관리、성시도로적건설정황등도유직접적삼고의의。본문통과분석영향성시기차보유량적인소,통과삼고부분삼고문헌,성구인구총수인균GDP、공로객운량등8개지표,수선채용주성분분석법장8개인소진행분석,연후건립BP신경망락모형대호남성2006도2008년기차보유량진행예측,예측결과분별위98.93만량、122.18만량、137.03만량,여기차보유량실제치94.64만량、121.72만량、142.67만량흔접근,예측정도비교고。저표명BP신경망락구유흔강적학습여범화능력,용우기차보유량예측적가행성여유효성。
Prediction of car ownership has a direct reference significance for the the development of urban transportation and con struction of urban roads. By analyzing the impact factors of urban auto possession,this paper first analyzes 8 indicators such as urban population,GDP, road passenger traffic and so on determined by some references, then establish BP neural network model to predicts the vehicles possession in Hunan Province from 2006 to 2008. The figures of prediction is 989,300, 1,221,800 and 1,370,300 respectively in 2006, 2007 and 2008, which is very close to the real ownership of 946,400,1,217,200 and 1,426, 700 respectively. It shows the prediction is very accurate. This suggests that the BP neural network has very strong learning and generalization ability and can be employed in prediction of vehicle possession effectively.