系统工程理论与实践
繫統工程理論與實踐
계통공정이론여실천
Systems Engineering—Theory & Practice
2012年
1期
189~195
,共null页
约束优化 内外交叉法 一维搜索 粒子群变异法
約束優化 內外交扠法 一維搜索 粒子群變異法
약속우화 내외교차법 일유수색 입자군변이법
constrained optimization; inward-outward crossover operator; line search; particle swarm mutation method
针对很多约束优化问题的最优解位于可行域的边界上或其附近的特点,提出了一种新的遗传算法.算法将种群中的可行解和不可行解分别存贮在两个容器中,新设计的交叉算子(内外交叉法)尽量让可行域内的可行解与可行域外的不可行解交叉,并顺着有利的方向一维搜索到可行域边界,此举既增大了个体接近全局最优解的几率,又增强了算法的收敛速度;粒子群变异法则吸取粒子群(PSO)算法的优点,让粒子沿粒子自身历史最优和全局最优的方向变异,而选择算子则采取了保留固定比例不可行解的方法.仿真结果证明了算法能够在种群规模小,迭代次数少的情况下迅速接近或找到全局最优解.
針對很多約束優化問題的最優解位于可行域的邊界上或其附近的特點,提齣瞭一種新的遺傳算法.算法將種群中的可行解和不可行解分彆存貯在兩箇容器中,新設計的交扠算子(內外交扠法)儘量讓可行域內的可行解與可行域外的不可行解交扠,併順著有利的方嚮一維搜索到可行域邊界,此舉既增大瞭箇體接近全跼最優解的幾率,又增彊瞭算法的收斂速度;粒子群變異法則吸取粒子群(PSO)算法的優點,讓粒子沿粒子自身歷史最優和全跼最優的方嚮變異,而選擇算子則採取瞭保留固定比例不可行解的方法.倣真結果證明瞭算法能夠在種群規模小,迭代次數少的情況下迅速接近或找到全跼最優解.
침대흔다약속우화문제적최우해위우가행역적변계상혹기부근적특점,제출료일충신적유전산법.산법장충군중적가행해화불가행해분별존저재량개용기중,신설계적교차산자(내외교차법)진량양가행역내적가행해여가행역외적불가행해교차,병순착유리적방향일유수색도가행역변계,차거기증대료개체접근전국최우해적궤솔,우증강료산법적수렴속도;입자군변이법칙흡취입자군(PSO)산법적우점,양입자연입자자신역사최우화전국최우적방향변이,이선택산자칙채취료보류고정비례불가행해적방법.방진결과증명료산법능구재충군규모소,질대차수소적정황하신속접근혹조도전국최우해.
Considering that the global optimal solutions often locate on or near the boundary of the feasible region for many constrained optimization problems, a novel genetic algorithm was proposed in this paper. The basic idea of the proposed algorithm was to put feasible solutions and infeasible solutions into two different containers respectively. Subsequently, a new designed crossover operator(named inward- outward crossover operator) was used to a feasible solution and a infeasible solution, then a line search along a potential decent direction was used to improve the offspring so as to find a good solution on or near to the boundary of feasible region. By this search procedure, the possibility for obtaining the globally optimal solution is obviously enhanced, and similarly, the convergent speed is also strengthened. The "particle swarm mutation" inherited the advantages of Particle Swarm Optimization (PSO) algorithm and searched for the potential solution along the direction of the best current particle and the direction of the best individual of the whole swarm in the past. Selection operator retained a constant rate of infeasible solutions. Numerical results indicate that the proposed algorithm can be efficient to get global optimal solutions or near to them in smaller population and less iteration times.