系统工程理论与实践
繫統工程理論與實踐
계통공정이론여실천
Systems Engineering—Theory & Practice
2012年
2期
349~355
,共null页
负顾客 启动期 备用服务员 拟生灭过程和矩阵几何解 M/M/I休假排队系统
負顧客 啟動期 備用服務員 擬生滅過程和矩陣幾何解 M/M/I休假排隊繫統
부고객 계동기 비용복무원 의생멸과정화구진궤하해 M/M/I휴가배대계통
negative customers; set-up Limes; spare server; quasi-birth-and-death process and matrix-geometric solution; the M/M~1 vacation queueing system
考虑一类有正、负顾客,带启动期和有备用服务员的M/M/1休假排队系统.负顾客一对一抵消队尾的正顾客(若有),若系统中无正顾客,到达的负顾客自动消失,负顾客不接受服务.系统中两个服务员,其中一个在岗工作时另外一个备用.上岗服务员若因为某种原因休假,备用服务员立即替换上岗.当系统变空时,系统关闭.用拟生灭过程和矩阵几何解方法,得到了稳态队长的分布,此外,证明了稳态条件下队长的条件随机分解并得到了附加队长的分布.最后,通过两个数值例子说明该模型可以较好的模拟一些实际问题.
攷慮一類有正、負顧客,帶啟動期和有備用服務員的M/M/1休假排隊繫統.負顧客一對一牴消隊尾的正顧客(若有),若繫統中無正顧客,到達的負顧客自動消失,負顧客不接受服務.繫統中兩箇服務員,其中一箇在崗工作時另外一箇備用.上崗服務員若因為某種原因休假,備用服務員立即替換上崗.噹繫統變空時,繫統關閉.用擬生滅過程和矩陣幾何解方法,得到瞭穩態隊長的分佈,此外,證明瞭穩態條件下隊長的條件隨機分解併得到瞭附加隊長的分佈.最後,通過兩箇數值例子說明該模型可以較好的模擬一些實際問題.
고필일류유정、부고객,대계동기화유비용복무원적M/M/1휴가배대계통.부고객일대일저소대미적정고객(약유),약계통중무정고객,도체적부고객자동소실,부고객불접수복무.계통중량개복무원,기중일개재강공작시령외일개비용.상강복무원약인위모충원인휴가,비용복무원립즉체환상강.당계통변공시,계통관폐.용의생멸과정화구진궤하해방법,득도료은태대장적분포,차외,증명료은태조건하대장적조건수궤분해병득도료부가대장적분포.최후,통과량개수치례자설명해모형가이교호적모의일사실제문제.
We consider an M/M/1 vacation queueing system with set-up period and spare servers, in which customers are either "positive" or "negative". Negative customers remove positive customers one by one only at the end (if present). When a negative customer arrives, if there isn't positive customer in system, it will disappear. Negative customers don't accept service. In the system, there are two servers, one goes on duty, the other keep on standby. If the first server is on vacation for some reason, the spare one replaces immediately. When system is empty, the system turn off. Using QBD (quasi-birth-and death) process and matrix-geometric solution method, we obtain the steady-st;ate distribution for queue length. Furthermore, we prove the conditional stochastic decomposition of queue length process in the stationary state and gain the distributions for additional queue length. Using two numerical examples, we verify that our model can represent some practical problems reasonably well finally.