系统工程理论与实践
繫統工程理論與實踐
계통공정이론여실천
Systems Engineering—Theory & Practice
2012年
3期
568~573
,共null页
组合预测 基因表达式编程 自动建模 函数挖掘
組閤預測 基因錶達式編程 自動建模 函數挖掘
조합예측 기인표체식편정 자동건모 함수알굴
combination forecasting; gene expression programming; automatic building model; functionmining
介绍一种利用基因表达式编程的方法来自动生成非线性函数的组合预测模型,并进行误差估计分析,改变过去只依靠各个子方法的简单线性相加,不能很好地反映非线性真实世界的传统组合预测建模方法.通过对我国CPI的真实历史数据验证,验证结果表明:与传统的ARIMA,灰色GM(1,1),BP神经网络和线性组合预测四种方法对比,基因表达式编程建立的组合预测模型所预测的数据准确度明显提高.
介紹一種利用基因錶達式編程的方法來自動生成非線性函數的組閤預測模型,併進行誤差估計分析,改變過去隻依靠各箇子方法的簡單線性相加,不能很好地反映非線性真實世界的傳統組閤預測建模方法.通過對我國CPI的真實歷史數據驗證,驗證結果錶明:與傳統的ARIMA,灰色GM(1,1),BP神經網絡和線性組閤預測四種方法對比,基因錶達式編程建立的組閤預測模型所預測的數據準確度明顯提高.
개소일충이용기인표체식편정적방법래자동생성비선성함수적조합예측모형,병진행오차고계분석,개변과거지의고각개자방법적간단선성상가,불능흔호지반영비선성진실세계적전통조합예측건모방법.통과대아국CPI적진실역사수거험증,험증결과표명:여전통적ARIMA,회색GM(1,1),BP신경망락화선성조합예측사충방법대비,기인표체식편정건립적조합예측모형소예측적수거준학도명현제고.
An application of gene expression progranmfing in combination forecasting modeling is proposed, which obviously improves tile traditional methods of linear combination that could not express nonlinear real world. Then, the estimating standard and forecasting standard error are calculated and analyzed. By using the actual historical data from CPI of China, the automatic generated combination forecasting model by using gene expression programming is established, and the result indicates that the accuracy calculated by this combination model is obviously much higher, compared with traditional methods such as ARIMA, GA(1,1), BP neural network and linear combination forecasting.