心理发展与教育
心理髮展與教育
심리발전여교육
Psychological Development and Education
2012年
3期
329~336
,共null页
曾平飞 余娜 辛涛 王烨晖
曾平飛 餘娜 辛濤 王燁暉
증평비 여나 신도 왕엽휘
大规模教育测量 带宽-保真度困境 多维Rasch模型 项目内多维度
大規模教育測量 帶寬-保真度睏境 多維Rasch模型 項目內多維度
대규모교육측량 대관-보진도곤경 다유Rasch모형 항목내다유도
large scale assessment; bandwidth-fidelity dilemma; multi-dimensional Rasch model; withinitem dimensionality
分别采用四维度和十五维度Rasch模型分析包含项目内多维度结构的科学测验数据,估计两种维度结构下维度分数的信度。结果表明,对比相应的单维模型而言,四维度与十五维度Rasch模型均能够极大提高各内容维度上分数估计的信度。四维度与十五维度Rasch模型拟合结果的比较表明,对于总长度固定的测验,维度数目的增加能够补偿子维度长度减少引起的信度损失。但是这一作用必须以维度间较高的相关性为前提。
分彆採用四維度和十五維度Rasch模型分析包含項目內多維度結構的科學測驗數據,估計兩種維度結構下維度分數的信度。結果錶明,對比相應的單維模型而言,四維度與十五維度Rasch模型均能夠極大提高各內容維度上分數估計的信度。四維度與十五維度Rasch模型擬閤結果的比較錶明,對于總長度固定的測驗,維度數目的增加能夠補償子維度長度減少引起的信度損失。但是這一作用必鬚以維度間較高的相關性為前提。
분별채용사유도화십오유도Rasch모형분석포함항목내다유도결구적과학측험수거,고계량충유도결구하유도분수적신도。결과표명,대비상응적단유모형이언,사유도여십오유도Rasch모형균능구겁대제고각내용유도상분수고계적신도。사유도여십오유도Rasch모형의합결과적비교표명,대우총장도고정적측험,유도수목적증가능구보상자유도장도감소인기적신도손실。단시저일작용필수이유도간교고적상관성위전제。
Due to broad content coveiage and limited testing time, the large scale assessment is challenged by the bandwidth-fidelity dilemma. This study is to explore how the multi-dimensional Rasch model would reliability in the within-item multi-dimensionality data. The results demonstrate that both 4-dimensional imp and rove 15- dimensional Rasch models fit data, which supports the construct validity of the test. The uni-dimensional model underestimates the correlation between domains due to measurement error. The multi-dimensional Rasch analysis yields a higher level of measurement precision and a more appropriate estimate for the correlation between domains as compared to uni-dimensional approach. The comparison between 4-dimension and 15-dimension analysis shows that the increase on the number of dimensions can compensate the effect of scale length reduction to a certain extent, as long as the correlations between the specific domain and the others are relatively high enough. In conclusion, the multi-dimensional Rasch analysis yields more reliable domain score than uni-dimensional Rasch model in the within-item multidimenionality context. For the test with fixed length, reliable scores can be reported on the more specified content domains, as long as there are high correlations between domains.