周口师范学院学报
週口師範學院學報
주구사범학원학보
Journal of Zhoukou Normal University
2012年
5期
32~34
,共null页
Frechet次微分 Proximel次微分 Q-次微分 E-次微分 变分型
Frechet次微分 Proximel次微分 Q-次微分 E-次微分 變分型
Frechet차미분 Proximel차미분 Q-차미분 E-차미분 변분형
Frechet subdifferential; Proximel subdifferential; Q-subdifferential; E-subdifferential; variational
研究了Banach空间中下半连续函数的Frechet次微分、Proximel次微分、Q-次微分和E-次微分,得到了这些次微分是可变分的一些充分条件.其结果改进和推广了相关的一些研究结果.
研究瞭Banach空間中下半連續函數的Frechet次微分、Proximel次微分、Q-次微分和E-次微分,得到瞭這些次微分是可變分的一些充分條件.其結果改進和推廣瞭相關的一些研究結果.
연구료Banach공간중하반련속함수적Frechet차미분、Proximel차미분、Q-차미분화E-차미분,득도료저사차미분시가변분적일사충분조건.기결과개진화추엄료상관적일사연구결과.
In this paper, suhdifferentiations of Frechet, Proximel and Q- subdifferentiations and E- subdifferentiations in Banach spaces are studied. It is obtained that some sufficient conditions about the subdifferentiations are variational. The present results improve and extend some known results in the literature.