洛阳师范学院学报
洛暘師範學院學報
락양사범학원학보
Journal of Luoyang Teachers College
2012年
11期
6~8
,共null页
奇摄动 匹配原理 转向点
奇攝動 匹配原理 轉嚮點
기섭동 필배원리 전향점
singular perturbation; matching principle; turning point
文章讨论了一类带有大参数的具有2n阶转向点的常微分方程.分别利用Liouville-Green变换和1/(2(n+1))阶第一类Bessel函数,构造了方程的外部解和内层解,最后通过匹配原理得到了方程外部解和内层解可匹配的条件,从而得到方程在整个区间上有效的不同渐近近似式.
文章討論瞭一類帶有大參數的具有2n階轉嚮點的常微分方程.分彆利用Liouville-Green變換和1/(2(n+1))階第一類Bessel函數,構造瞭方程的外部解和內層解,最後通過匹配原理得到瞭方程外部解和內層解可匹配的條件,從而得到方程在整箇區間上有效的不同漸近近似式.
문장토론료일류대유대삼수적구유2n계전향점적상미분방정.분별이용Liouville-Green변환화1/(2(n+1))계제일류Bessel함수,구조료방정적외부해화내층해,최후통과필배원리득도료방정외부해화내층해가필배적조건,종이득도방정재정개구간상유효적불동점근근사식.
A class of singularly perturbed ordinary differential equation for larger parameter with 2n order turning point is considered.Using the Liouville-Green transform and the first class of the Bessel function of 1/(2(n+1)) order,the outer solution and the interior layer solution are constructed.Finally,the matching conditions are obtained by the matching principle,and then,the different representations for the uniformly asymptotically approximated solution in the entire area are obtained.